
Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 User’s Guide

DRAFT DRAFT

Carderock Division
Naval Surface Warfare Center

Bethesda, Maryland 20817-5700

NSWCCD-26-TR-1998/xx October 1998

Total Ship Systems Directorate
Research and Development Report

Leading Edge Advanced Prototyping
 For Ships (LEAPS):

LEAPS User’s Guide
Version 2.0

by
Richard T. Van Eseltine and Robert Ames

Distribution authorized to the Department of Defense and
DoD contractors only; critical technology; October 1998.
Other requests for this document shall be referred to the
Carderock Division, Naval Surface Warfare Center (Code 20)

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 User’s Guide

DRAFT 2 02 Apr 1999

TABLE OF CONTENTS
Table of Contents...2
Table of Figures ...7
Introduction...8

Background...8
About the LEAPS Architecture ...8
System Requirements for LEAPS/API ...9
Installation...9
References, Help, Technical Support...10

Overview of LEAPS..11
Overview of Primary Classes ...11
Overview of Geometry Object Structure (GOBS) Classes...11

Product Model Views ..12
Shape Objects ..13

Overview of Utility Classes ...15
Getting Started ...16

Defining and Designing Your Product Model ...16
Compiling Your Application Using the LEAPS API...17
Creating a LEAPS Database..18

Management of LEAPS Objects ..19
Managing a LEAPS Database..19
Managing Studies...19

Creating a Study ...19
Retrieving a Study...19
Destroying a Study..19
Determining the Existence of a Study...19
Listing the Studies Managed by a Factory..20

Managing Concepts..20
Creating a Concept ...20
Retrieving a Concept ..20
Destroying a Concept ...21
Determining the Existence of a Concept ..21
Listing the Concepts Contained in a Study...21
Retrieving a Concept’s Structure ..21

Managing Scenarios...21
Creating a Scenario ..22
Retrieving a Scenario..22
Destroying a Scenario...22
Determining the Existence of a Scenario..22
Listing the Scenarios Contained in a Study ..22

Managing Components ..22
Creating a Component..23
Retrieving a Component ...23
Destroying a Component ..23
Determining the Existence of a Component ...23
Listing the Components Contained in a Concept ...23
Retrieving a Component’s Structure...24

Managing Systems...24
Creating a System ..24
Retrieving a System..24
Destroying a System...24
Determining the Existence of a System..24
Listing the Systems Contained in a Concept ..25

Managing Connections...25

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 User’s Guide

DRAFT 3 02 Apr 1999

Creating a Connection ..25
Retrieving a Connection..25
Destroying a Connection...25
Determining the Existence of a Connection..26
Listing the Connections Contained in a Concept..26

Managing Diagrams ...26
Creating a Diagram...26
Retrieving a Diagram ..26
Destroying a Diagram ...27
Determining the Existence of a Diagram ..27
Listing the Diagrams Contained in a Concept ..27

Managing LEAPS Geometry Objects ...27
Creating a Surface ..28
Retrieving a Surface ...29
Destroying a Surface ..29
Determining the Existence of a Surface ...29
Listing the Surfaces Contained in a Structure ..29
Creating a Pcurve ...30
Retrieving a Pcurve...31
Destroying a Pcurve..31
Determining the Existence of a Pcurve...31
Listing the Pcurves Contained in a Structure..31
Creating a Ppoint ..32
Retrieving a Ppoint..32
Destroying a Ppoint...32
Determining the Existence of a Ppoint..32
Listing the Ppoints Contained in a Structure...32
Creating a CoPoint..33
Retrieving a CoPoint ...33
Destroying a CoPoint ..33
Determining the Existence of a CoPoint ...34
Listing the CoPoints Contained in a Structure..34
Creating an Edge ..34
Retrieving an Edge ...34
Destroying an Edge ..35
Determining the Existence of an Edge ...35
Listing the Edges Contained in a Structure ..35
Creating a CoEdge ...35
Retrieving a CoEdge...36
Destroying a CoEdge..36
Determining the Existence of a CoEdge...36
Listing the CoEdges Contained in a Structure..36
Creating an EdgeLoop..36
Retrieving an EdgeLoop ...37
Destroying an EdgeLoop ..37
Determining the Existence of an EdgeLoop ...37
Listing the EdgeLoops Contained in a Structure ..37
Creating a Face ..38
Retrieving a Face..38
Destroying a Face...38
Determining the Existence of a Face..38
Listing the Faces Contained in a Structure...38
Creating an OrientedClosedShell ...39
Retrieving an OrientedClosedShell...39
Destroying an OrientedClosedShell..39
Determining the Existence of an OrientedClosedShell...39

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 User’s Guide

DRAFT 4 02 Apr 1999

Listing the OrientedClosedShells Contained in a Structure..40
Creating a Solid ..40
Retrieving a Solid..40
Destroying a Solid...41
Determining the Existence of a Solid..41
Listing the Solids Contained in a Structure...41
Creating a TopologicalView ..41
Retrieving a TopologicalView..42
Destroying a TopologicalView...42
Determining the Existence of a TopologicalView ...42
Listing the TopologicalViews Contained in a Structure ..42
Creating a CommonView..42
Retrieving a CommonView ...43
Destroying a CommonView ..43
Determining the Existence of a CommonView ...43
Listing the CommonViews Contained in a Structure ..43

Managing Materials for LEAPS Objects ...44
Creating a Material for a LEAPS Object ...44
Retrieving a Material for a LEAPS Object...44
Destroying a Material for a LEAPS Object..45
Determining the Existence of a Material for a LEAPS Object...45
Listing the Materials Managed by a LEAPS Object..45
Creating a MaterialGroup for a LEAPS Object ...45
Retrieving a MaterialGroup for a LEAPS Object ..46
Destroying a MaterialGroup for a LEAPS Object ...46
Determining the Existence of a MaterialGroup for a LEAPS Object46
Listing the MaterialGroups Managed by a LEAPS Object..46

Managing Properties for LEAPS Objects ...47
Creating a Property for a LEAPS Object ..47
Retrieving a Property for a LEAPS Object..47
Destroying a Property for a LEAPS Object...47
Determining the Existence of a Property for a LEAPS Object..48
Listing the Properties Managed by a LEAPS Object ..48
Creating a PropertyGroup for a LEAPS Object ..48
Retrieving a PropertyGroup for a LEAPS Object..49
Destroying a PropertyGroup for a LEAPS Object...49
Determining the Existence of a PropertyGroup for a LEAPS Object......................................49
Listing the PropertyGroups Managed by a LEAPS Object ...49

Determining the Contents Of LEAPS Objects..51
Determining the Contents of a LEAPS Database...51
Determining the Contents of a LEAPS Study Object ...51

Determining the Concepts of a Study Object..51
Determining the Scenarios of a Study Object...52
Determining the Properties of a Study Object ..52
Determining the PropertyGroups of a Study Object ...53

Determining the Contents of a LEAPS Concept Object ...53
Determining the Components of a Concept Object ..53
Determining the Systems of a Concept Object...54
Determining the Properties of a Concept Object ..54
Determining the PropertyGroups of a Concept Object ...54
Retrieving a Concept’s Structure ..55

Determining the Contents of a LEAPS Component Object..55
Determining the Properties of a Component Object...55
Determining the PropertyGroups of a Component Object..56
Retrieving a Component’s Structure...56

Determining the Contents of a LEAPS System Object ..56

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 User’s Guide

DRAFT 5 02 Apr 1999

Determining the Properties of a System Object ...56
Determining the PropertyGroups of a System Object ..57

Determining the Contents of a LEAPS Scenario Object ..57
Determining the Properties of a Scenario Object ...57
Determining the PropertyGroups of a Scenario Object ..58

Determining the Contents of a LEAPS Structure Object..58
Determining the Properties of a Structure Object...59
Determining the PropertyGroups of a Structure Object..59
Determining the Materials of a Structure Object...59
Determining the MaterialGroups of a Structure Object...60
Determining the CommonViews of a Structure Object ...60
Determining the TopologicalViews of a Structure Object ...61
Determining the Solids of a Structure Object..61
Determining the OrientedClosedShells of a Structure Object ..62
Determining the Faces of a Structure Object..62
Determining the EdgeLoops of a Structure Object ...63
Determining the CoEdges of a Structure Object ..63
Determining the Edges of a Structure Object ...63
Determining the CoPoints of a Structure Object...64
Determining the Ppoints of a Structure Object ...64
Determining the Pcurves of a Structure Object ..65
Determining the Surfaces of a Structure Object ...65

Determining the Contents of a LEAPS CommonView Object ..65
Determining the Properties of a CommonView Object ...66
Determining the PropertyGroups of a CommonView Object ..66
Determining the Materials of a CommonView Object...67
Determining the MaterialGroups of a CommonView Object...67
Determining the CommonViews of a CommonView Object ...67
Determining the TopologicalViews of a CommonView Object ...68
Determining the CommonViews that Use the CommonView Object......................................68

Determining the Contents of a LEAPS TopologicalView Object ..69
Determining the Properties of a TopologicalView Object ...69
Determining the PropertyGroups of a TopologicalView Object ..70
Determining the Materials of a TopologicalView Object ...70
Determining the MaterialGroups of a TopologicalView Object ...71
Determining the Leaps Object Type of a TopologicalView Object ...71
Determining the CommonViews that use the TopologicalView Object72

Determining the Contents of a LEAPS Solid Object ..72
Determining the Outershell of a Solid Object..72
Determining the Voids of a Solid Object ...73
Determining the TopologicalView that Represents the Solid Object73

Determining the Contents of a LEAPS OrientedClosedShell Object ...73
Determining the Orientation of an OrientedClosedShell Object ...74
Determining the Faces of an OrientedClosedShell Object ...74
Determining the Solids that Use the OrientedClosedShell Object ...74

Determining the Contents of a LEAPS Face Object ..75
Determining the Orientation of an Face Object ..75
Determining the Outer Loop of a Face Object ..75
Determining the Inner Loops of a Face Object...75
Determining the OrientedClosedShells that Use the Face Object ...76
Determining the TopologicalView that Represents the Face Object76
Determining the Surface the Face Object Is On...77

Determining the Contents of a LEAPS EdgeLoop Object ..77
Determining the Orientation of an EdgeLoop Object..77
Determining the Edges of an EdgeLoop Object ...77
Determining the Faces that Use the EdgeLoop Object ..78

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 User’s Guide

DRAFT 6 02 Apr 1999

Determining the Contents of a LEAPS Edge Object ..78
Determining the Start Point of an Edge Object...78
Determining the End Point of an Edge Object ..79
Determining the Pcurve that the Edge Object Lies on..79
Determining the Surface that the Edge Object Lies on ..79
Determining the CoEdge that the Edge Object Is A Part Of...79
Determining the EdgeLoops that Use the Edge Object..80

Determining the Contents of a LEAPS CoEdge Object ...80
Determining the Edges of a CoEdge Object...80

Determining the Contents of a LEAPS Ppoint Object ..81
Determining the Edges the Ppoint Object Starts and Ends..81
Determining the Pcurve Object that the Ppoint Object Lies on ..81
Determining the location of the Ppoint Object ..82
Determining the CoPoint that the Ppoint Object is a Part of...82

Determining the Contents of a LEAPS CoPoint Object..82
Determining the Ppoints of a CoPoint Object ...83
Determining the Cartesian location of the CoPoint Object ...83

Determining the Contents of a LEAPS Pcurve Object ...83
Determining the Surface that the Pcurve Object is Mapped to...83
Determining the Ppoints that are Mapped to a Pcurve Object ...84

Determining the Contents of a LEAPS Surface Object ..84
Determining the Pcurves that are Mapped to a Surface Object ...84
Determining the TopologicalView that Represents the Surface Object..................................85

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 User’s Guide

DRAFT 7 02 Apr 1999

TABLE OF FIGURES
Figure 1 - Three Compartment Test Case...12
Figure 2 - Three Compartments on Deck 1 ...14
Figure 3 – CoEdge Spline Dependencies..15
Figure 4 - LEAPS-supported Concept Development Process ...16
Figure 5 - Example of LEAPS Product Model..17

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 User’s Guide

DRAFT 8 02 Apr 1999

INTRODUCTION

Background
In 1996, an innovation team was formed at the Carderock Division, Naval
Surface Warfare Center (NSWCCD) to investigate the issues of virtual
prototyping and modeling and simulation. This team became known as
the LEAPS (Leading Edge Advanced Prototyping for Ships) team. The
efforts of this team led to the development of an architecture that
facilitated an integrated virtual prototyping process for ship concept
assessments. The vision for the virtual prototyping process for ships is
similar to that developed for tank concept assessments by the Army Tank
Automotive Command (TACOM). TACOM won a Presidential Quality
Award for that development. The current scope of the LEAPS
development effort encompasses the first five steps of the TACOM
process:

1. mission requirements identification,
2. concepts development;
3. performance modeling,
4. warfare analysis; and,
5. to a lesser extent, detailed design.

About the LEAPS Architecture
The LEAPS architecture is a framework that can support conceptual
surface ship and submarine design and analysis through DoD acquisition
Milestone 1, i.e., early stage ship design. Due to the complexity and
diversity of naval ship design and analysis, the LEAPS architecture takes
a “meta model” approach to product model development. This general
engineering approach has some classes that may be considered specific
to naval ship design, but most classes would be applicable to
development any engineering product.

To understand the LEAPS architecture it is necessary to have a
taxonomy for concepts such as Application Programming Interface,
Product Model, Meta Model, and other terms used today in discussing
integrated environments and their computational framework. The intent is
not to find agreement with the terminology, only to give it context within
the LEAPS architecture.

The LEAPS MetaModel (LEAPS/MM) is a set of entities that describe
representations and methods that can be used in defining a smart product
model. In particular, these entities allow complex engineering
representations such as ship modeling. For example, there are entities
for geometric representation, performance behaviors, component and
subsystem definition, and processes such as Studies. While this
metamodel was based on ship design and analysis requirements, it is

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 User’s Guide

DRAFT 9 02 Apr 1999

general enough that it could be used in the development of almost any
product model.

The LEAPS Application Programming Interface (LEAPS/API) is a set
of C++ classes available for application programming that implement the
LEAPS/MM. The LEAPS/API is a library written using ISO standard C++
and is accessible in both static and dynamic link libraries. This API is
used to write translators to retrieve and store data associated with the
LEAPS Product Model (LEAPS/PM).

The LEAPS Product Model (LEAPS/PM) is the object oriented schema
or product characterization of the product, or ship, as defined by
individual IPT’s. The product model for a submarine would be different
than a monohull surface combatant. The LEAPS/MM supports the
development of either product model.

The LEAPS Data Base (LEAPS/DB) is the persistent store for any
LEAPS/PM. A LEAPS/DB can be shared by multiple distributed
computers and operating systems: UNIX, Windows 95/NT, and
Macintosh.

LEAPS Applications (LEAPS/APP) are individual applications that
communicate with the LEAPS/DB through the LEAPS/API. In many
cases these individual applications are wrappers to legacy codes. These
wrappers allow both modern and legacy programs to create and analyze
product model data. There are some applications currently in
development that will provide a common interface to the LEAPS/DB that
will deal with executive control and product visualization.

The LEAPS STEP (LEAPS/STEP) is an ISO STEP translation service for
exchange of geometry data through Part21 files. It has been
demonstrated but is not available at this time.

The LEAPS CORBA (LEAPS/CORBA) is a CORBA interface to the
LEAPS/API. Current efforts to incorporate a CORBA interface to the
LEAPS/API are underway. This capability has been demonstrated but is
not available at this time.

System Requirements for LEAPS/API
LEAPS/API is written using ISO standard C++. It currently being
development under Microsoft Windows (Win32) using Microsoft Visual
C++. At the time this documentation was written, this compiler supported
all of the ISO standard features used by LEAPS. When other platforms
bring their compilers into full compliance with the ISO standard,
distribution of LEAPS on these platforms will be supported.

Installation
LEAPS is not an application. As such, there is no installation utility. It is
recommended, however, that you copy the files and their respective

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 User’s Guide

DRAFT 10 02 Apr 1999

directories to a location on your computer where you would expect to be
doing development.

References, Help, Technical Support
LEAPS reference material is available through the web site at
http://ocean.dt.navy.mil/leaps

This web site will contain the latest versions of libraries, documentation
and sample code. Technical support is available for funded projects and
collaborative initiatives. Contact Myles Hurwitz, mhurwitz@dt.navy.mil,
(301) 227-1927, if you would like information on how your organization
can participate in the LEAPS environment.

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 User’s Guide

DRAFT 11 02 Apr 1999

OVERVIEW OF LEAPS

Overview of Primary Classes
Not yet documented

Overview of Geometry Object Structure (GOBS) Classes
The LEAPS GOBS classes allows CAD system geometry and attributes
to be presented to engineering modelers and analysts in a form which
allows for convenient discretization according to the requirements of their
models. The GOBS model purports that geometric product model data is
defined and represented as ‘views’ of geometric objects. The word “view”
is in quotes because it is actually an object that appears as geometry.
This is not to say that GOBS does not allow geometric objects to
represent geometric product model data only that another more powerful
approach is available. This is contrary to most CAD representations
where the geometry defines the view and the object simultaneously. In
addition, GOBS contains connection entities that define common
boundaries between objects like the intersection at a deck edge and the
hull. The boundary of the deck knows where it is located on the hull and
visa versa.

A discussion of some of the GOBS objects follows. It is important to
understand that due to space constraints not all GOBS objects are
discussed nor are the various methods available to applications through
the LEAPS/API.

To understand one aspect of this new geometry topology, an example of
three compartments within a ship, depicted in Figure 1 is illustrated. This
three compartment case, while simplistic in appearance, actually poses a
number of challenges to product modeling. Consider the “knowledge”
that must exist at transverse bulkhead 2, (Trans-2). This bulkhead plays a
number of roles one of which is the boundary of three compartments.

The bulkhead is connected to the hull, port and starboard, the
longitudinal, and both decks above and below. In addition, there are
locations on this bulkhead that may be of interest to analysts such as the
corner points at intersections with other surfaces (longitudinal, hull, deck,
etc.). This bulkhead also plays a role as a boundary, or Face, of each
individual compartment. These boundaries can be described as “views”
of the bulkhead as seen by each compartment and unique to each
compartment. Consider also that the object Trans-2 may play a role, or
roles, in many other “views” such as a watertight bulkhead bounding a
zone on the ship.

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 User’s Guide

DRAFT 12 02 Apr 1999

Figure 1 - Three Compartment Test Case

Product Model Views
In GOBS “views” of product model data are actually objects that
compose existing geometry into unique physical objects. Similarly there
are views that associate physical objects into like groupings. Views that
create physical objects from geometry elements are called Topological
Views. Views that associate Topological Views into common groups are
called Common Views.

Topological Views
The term Topological View is foreign to most familiar with geometric
modeling. Its best to think of them as traditional surfaces, trimmed
surfaces, and Brep solids, with additional capability. The construction of
Topological Views allows for member shape objects, like surfaces and
solids, used in the creation of a Topological View, to also play a role as
geometric members in others Topological Views.

Common Views
Common Views do not have any spatial constraints, unlike Topological
Views, they are simply a logical grouping of Topological Views. Common
Views can also have other Common Views as members. Common Views
are the primary vehicle by which domain analyst or designers will view or
interrogate the product model. One example of a Common View could be
“Habitability Spaces on Deck 3”. Another Common View called “Ship

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 User’s Guide

DRAFT 13 02 Apr 1999

Habitability Spaces” could contain the Common View “Habitability
Spaces on Deck 3” as a member. Similar uses of Common Views could
include “Exterior Surfaces”, “Compartments”, “Machinery Spaces”, or
“Mast”.

Shape Objects
Some distinctions should be made of the differences between GOBS
shape objects and what can be considered typical geometric entities in
applications that use and compose geometry such as CAD systems. In
GOBS, geometry (Topological Views) is the association of shape and
Properties. Current shape objects are Surfaces, trimmed surfaces
(Faces), and manifold Brep Solids.

One major difference in GOBS modeling is the representation of Faces.
Currently CAD systems today consider a Face to be composed of a
single Surface bounded by a single outer boundary and any number of
inner boundaries. The typical CAD model does not allow the underlying
Surface to be used in the construction of any other Face. It requires that
a copy of that Surface be made. GOBS, on the other hand, allows for a
single Surface to be used in the construction of any number of Faces;
where the Face object contains reference to one Surface, one outer
EdgeLoop, and any number of inner EdgeLoops. This concept is
illustrated more clearly in Figure 2 where the deck on a ship is shown
highlighting three Faces used as compartment boundaries. All three
Faces share a common deck Surface and are defined by a selection of
Edges that compose a bounded EdgeLoop.

Because Surfaces, Faces, and Solids are shape objects they have no
Properties. In GOBS the Topological View class associates member
shape objects with physical characteristics or Properties and can be
thought of as a geometric component, or part. The Topological View has
Properties of a physical or performance nature, where the underlying
Surface, Face, or Solid object, is simply providing information on its
shape. As Topological Views are composed, the grouping into Common
Views is the next natural step.

In Figure 2, Topological Views of regions on a deck are illustrated. In this
case they appear as “Comp 1 Deck”, “Comp 2 Deck”, and “Comp 3
Deck”. Each Topological View use Faces (“FA1”, “FA2”, “FA3”) to define
their shape within compartments (Common Views named “Compartment
1”, “Compartment 2”, “Compartment 3”). Similarly these Common View
compartments are also shown as members of a single Common View
defining a zone (“Zone 1”). In summary, this example demonstrates how
space with each compartment derives their shape from Faces. These
Faces are defined as simple boundaries (EdgeLoops) on single
underlying geometric element which is a Surface (Deck 1) defining the
entire deck shape. These spaces are then associated in a Common View
to support design domain knowledge.

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 User’s Guide

DRAFT 14 02 Apr 1999

Surface - Deck 1
Face - Fa3
TopV - Comp 3 Deck
ComV - Compartment 3
ComV - Zone 1

Surface - Deck 1
Face - Fa2
TopV - Comp 2 Deck
ComV - Compartment 2
ComV - Zone 1

Surface - Deck 1
Face - Fa1
TopV - Comp 1 Deck
ComV - Compartment 1
ComV - Zone 1

Deck 1

Figure 2 - Three Compartments on Deck 1

Again, GOBS takes the position that topology is a view of space not the
space itself. An office room, ship’s compartments, or other like space,
can be viewed as the collection of faces that make the walls, floor, and
ceiling. To the occupant the wall of the room extends to the intersection
of other walls, ceiling, and floor. The wall, however, may be defined as
the space bounded by the outside walls of a building. Thus, the office
room could be represented as a list of connected faces where the view of
the wall is the region of the larger wall surface with local boundaries
applied.

Another fundamental feature of GOBS is the CoEdge object. The
CoEdge provides a unique role in the discretization of the geometry for
analysis. Essentially, a CoEdge knows all edges located on each surface
and declares them to be equivalent in 3 space, see Figure 3. It also
contains an n-dimensional spline function that maps the parameterization
of each edge into a single function. This allows for the continuity of points
along one surface to migrate to another surface without having to perform
closest point approximations.

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 User’s Guide

DRAFT 15 02 Apr 1999

g(r)

u

v

s

t

Surface f:
Surface m: (s, t)
Pcurve a: (i)
Pcurve b: (j)
CoEdgeSpline g:

(u, v) (x, y, z)
(x, y, z)

(u, v)
(s, t)

(r) (i, j)

®

®

®

®

®

Surface m

Surface f

Figure 3 – CoEdge Spline Dependencies

With this topology the ability to traverse boundaries, both logically,
explicitly, and with information on the relationship of surface parameter
space affords many advantages. Clearly the ability to grid or mesh
across trim surface boundaries with node continuity is the most obvious.
With the GOBS objects available as a CORBA service to legacy
applications, the communication of a single product model geometry in
multiple views provides a efficient and effective means for multidiscipline
analysis.

Overview of Utility Classes
Not yet documented

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 User’s Guide

DRAFT 16 02 Apr 1999

GETTING STARTED

Defining and Designing Your Product Model
Defining your product model is a complex task. There are many
references to product model design and the subject is too broad to cover
here. There has been some product model development done in support
of LEAPS that pertains to ship design and analysis, but this is an ongoing
effort. Likewise, STEP application protocols for ships have been
developed by and for shipyards that has some overlap with concept
design and analysis. This also is an evolving standard.

Figure 4 shows an example of a ship concepts analysis data flow process
that is driven by an Integrated Process Team (IPT) It was created as part
of the initial LEAPS effort. Such a model helps to define a use case for
your product model.

LEAPS: Leading Edge Advanced Prototyping for ShipsLEAPS: Leading Edge Advanced Prototyping for Ships

 NSWCCD Innovation CenterNSWCCD Innovation Center

Mission Areas

IPT

Concepts Analysis

Technologies

•Existing

•Emerging

Analysis Tools

•Design

•Performance

Effective Concepts
Technology Needs

Tool Needs

•Budget
•Performance thresholds and goals
•Cultural
•Physical
•Time Constraints

Figure 4 - LEAPS-supported Concept Development Process

The IPT is responsible to define and design the LEAPS/PM. The IPT
must determine what attributes are needed by the study and define these
attributes. The IPT must also determine where the attributes belong in
the Leaps/MM and specify the analyst responsible for providing the data
for the attribute. Figure 5 shows an example of a part of a LEAPS/PM that
was defined by the LEAPS team.

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 User’s Guide

DRAFT 17 02 Apr 1999

Instance Class Type Parent Owner
hull_principal_dimensions Lps::PropertyGroupPtr hull_form
lbp Lps::PropertyPtr Lps::RealScalarPtr hull_principal_dimensions
beam Lps::PropertyPtr Lps::RealScalarPtr hull_principal_dimensions
draft Lps::PropertyPtr Lps::RealScalarPtr hull_principal_dimensions
depth_sta_0 Lps::PropertyPtr Lps::RealScalarPtr hull_principal_dimensions
depth_sta_3 Lps::PropertyPtr Lps::RealScalarPtr hull_principal_dimensions
depth_sta_10 Lps::PropertyPtr Lps::RealScalarPtr hull_principal_dimensions
depth_sta_20 Lps::PropertyPtr Lps::RealScalarPtr hull_principal_dimensions
prismatic_coef Lps::PropertyPtr Lps::RealScalarPtr hull_principal_dimensions
max_section_coef Lps::PropertyPtr Lps::RealScalarPtr hull_principal_dimensions
waterplane_coef Lps::PropertyPtr Lps::RealScalarPtr hull_principal_dimensions
lcb_lbp Lps::PropertyPtr Lps::RealScalarPtr hull_principal_dimensions
lcf_lbp Lps::PropertyPtr Lps::RealScalarPtr hull_principal_dimensions
half_siding_width Lps::PropertyPtr Lps::RealScalarPtr hull_principal_dimensions
bot_rake Lps::PropertyPtr Lps::RealScalarPtr hull_principal_dimensions
main_deck_ht Lps::PropertyPtr Lps::RealScalarPtr hull_principal_dimensions
raised_deck_ht Lps::PropertyPtr Lps::RealScalarPtr hull_principal_dimensions
raised_deck_limits_array Lps::PropertyPtr Lps::RealSTLVectorPtr hull_principal_dimensions

Figure 5 - Example of LEAPS Product Model

The analyst is responsible for the translator that retrieves the attributes he
needs to develop his input for his analysis program. Thus, the analyst
must determine what attributes are needed from the LEAPS/PM to
develop his input for his analysis program. The analyst is also
responsible for the translator that stores the attributes he is responsible
for in the LEAPS/PM. The analyst must insure that attributes he provides
are being used appropriately by other members of the IPT.

Compiling Your Application Using the LEAPS API
Compiling your application using the LEAPS class library is dependent on
the platform (i.e. operation system), the compiler, and linker being used.
The compiler must be fully compliant with the ISO C++ standard.
Currently, LEAPS libraries are only available for Windows NT 4.0.

There are three steps needed to ensure the proper generation of an
executable.

1. The include path must be setup properly to ensure that directory
references to all the include files needed by the LEAPS API are
established. Using Visual C++ 5.0, this is done with the /I option for
the compile command. For example, if the include path for LEAPS is
L:\leaps\include, then /I “L:\leaps\include” would be added as an
option to the compile command.

2. Like the include path in step 1, the library path that contains the
LEAPS library (this includes the DTNURBS library) must also be
located by the linker. Using Visual C++ 5.0, this is done with the
/libpath option for the link command. For example, if the library path

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 User’s Guide

DRAFT 18 02 Apr 1999

for LEAPS is L:\leaps\libraries, then /libpath:"L:\leaps\libraries"
would be added as an option to the link command.

3. The appropriate LEAPS and DTNURBS libraries must also be
included in the link command. For example using Visual C++ 5.0 in a
console application, LeapsV2StaticRelease.lib and
dtnurbsV35StaticRelease.lib would be added to the link command.
The appropriate libraries (dtnurbsV35DLLRelease.lib,
LeapsV2DLLRelease.lib) would be substituted for WIN32 DDL based
applications.

If the DLL version of the LEAPS library is used, application programs
should be compiled with the proper multithreaded DLLs and
__DLLIMPORT should be defined.

Creating a LEAPS Database
LEAPS/API stores all persistent data in a database. This database is a
directory on the file system where the LEAPS/PM data will be stored.
The user simply creates a directory on the file system. The user has the
option of referencing this database through a user defined environment
variable or specifying the directory path explicitly. Once the directory is
created, modification of this directory should only occur through the
LEAPS API. If modification of this directory occurs by other means, it
could corrupt the database.

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 User’s Guide

DRAFT 19 02 Apr 1999

MANAGEMENT OF LEAPS OBJECTS

Managing a LEAPS Database
A LEAPS Factory is created to manage a LEAPS database. To create a
Factory to manage a database whose directory is SampleLeapsDB, code
such as:

Lps::Factory leapsDB;
leapsDB = Lps::Factory::create ("SampleLeapsDB");

is used.

Managing Studies
A LEAPS Factory manages LEAPS Study objects that are in a LEAPS
database. The Factory has member methods that provide various
functions that involve Study objects. These member methods can:

• Create a Study object,
• Retrieve a Study object,
• Destroy a Study object,
• Determine the existence of a Study object, and
• List Study objects that are managed by the Factory.

Creating a Study
If leapsDB is a factory that has been created to manage a LEAPS
database, a program can create a Study with the following code.

Lps::StudyPtr cvxStudy;
cvxStudy = leapsDB->createStudy ("cvxStudy", 1);

Retrieving a Study
If leapsDB is a factory that has been created to manage a LEAPS
database, a program can retrieve a Study with the following code.

Lps::StudyPtr cvxStudy;
cvxStudy = leapsDB->getStudy ("cvxStudy", 1);

Destroying a Study
If leapsDB is a factory that has been created to manage a LEAPS
database, a program can destroy a Study with the following code.

leapsDB->destroyStudy ("cvxStudy", 1);

Determining the Existence of a Study
If leapsDB is a factory that has been created to manage a LEAPS
database, the following code determines if a study exists.

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 User’s Guide

DRAFT 20 02 Apr 1999

If (leapsDB->doesStudyExist ("cvxStudy", 1)
 std::cout << "Study Exists" << std::endl;
else
 std::cout << "Study does NOT Exist" << std::endl;

Listing the Studies Managed by a Factory
If leapsDB is a factory that has been created to manage a LEAPS
database, a program can obtain a list of the studies unique identifiers
that are contained within the database with the following code.

Lps::UniqueIdList uidList = leapsDB->getUidsOfStudies ();

or a list of names and versions of the studies with

Lps::NameVersionPairList nvList;
nvList = leapsDB->getNameVersionPairsOfStudies ();

UniqueIdList is a type definition for a Standard Template Library (STL)
vector of strings. NameVersionPairList is a type definition for a STL
vector of pairs where a pair consists of a string and an unsigned integer.

Managing Concepts
A LEAPS Study object manages LEAPS Concept objects that are
contained by it. The Study has member methods that provide various
functions that involve Concept objects. These member methods can:

• Create a Concept object,
• Retrieve a Concept object,
• Destroy a Concept object,
• Determine the existence of a Concept object,
• List Concept objects that are contained within the Study, and
• Retrieve a Concept’s structure (geometry).

Creating a Concept
If cvxStudy is a Study object that has been retrieved, a program can
create a Concept with the following code.

Lps::ConceptPtr cvx;
cvx = cvxStudy->createConcept ("cvx", 1);

Retrieving a Concept
If cvxStudy is a Study object that has been retrieved, a program can
retrieve a Concept with the following code.

Lps::ConceptPtr cvx;
cvx = cvxStudy->getConcept ("cvx", 1);

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 User’s Guide

DRAFT 21 02 Apr 1999

Destroying a Concept
If cvxStudy is a Study object that has been retrieved, a program can
destroy a Concept with the following code.

cvxStudy->destroyConcept ("cvx", 1);

Determining the Existence of a Concept
If cvxStudy is a Study object that has been retrieved, the following code
determines if a Concept exists.

If (cvxStudy->doesConceptExist ("cvx", 1)
 std::cout << "Concept Exists" << std::endl;
else
 std::cout << "Concept does NOT Exist" << std::endl;

Listing the Concepts Contained in a Study
If cvxStudy is a Study object that has been retrieved, a program can
obtain a list of the concepts unique identifiers that are contained within
the Study with the following code.

Lps::UniqueIdList uidList = cvxStudy->getUidsOfConcepts ();

or a list of names and versions of the concepts with

Lps::NameVersionPairList nvList;
nvList = cvxStudy->getNameVersionPairsOfConcepts ();

UniqueIdList is a type definition for a Standard Template Library (STL)
vector of strings. NameVersionPairList is a type definition for a STL
vector of pairs where a pair consists of a string and an unsigned integer.

Retrieving a Concept’s Structure
If cvx is a Concept object that has been retrieved, a program can obtain
the concept’s structure with the following code.

Lps::StructurePtr cvxStructure;
cvxStructure = cvx->getConceptStructure ();

Managing Scenarios
A LEAPS Study object manages LEAPS Scenario objects that are
contained by it. The Study has member methods that provide various
functions that involve Scenario objects. These member methods can:

• Create a Scenario object,
• Retrieve a Scenario object,
• Destroy a Scenario object,
• Determine the existence of a Scenario object, and
• List Scenario objects that are contained within the Study.

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 User’s Guide

DRAFT 22 02 Apr 1999

Creating a Scenario
If cvxStudy is a Study object that has been retrieved, a program can
create a Scenario with the following code.

Lps::ScenarioPtr situationA;
situationA = cvxStudy->createScenario ("situationA", 1);

Retrieving a Scenario
If cvxStudy is a Study object that has been retrieved, a program can
retrieve a Scenario with the following code.

Lps::ScenarioPtr situationA;
situationA = cvxStudy->getScenario ("situationA", 1);

Destroying a Scenario
If cvxStudy is a Study object that has been retrieved, a program can
destroy a Scenario with the following code.

cvxStudy->destroyScenario ("situationA", 1);

Determining the Existence of a Scenario
If cvxStudy is a Study object that has been retrieved, the following code
determines if a Scenario exists.

If (cvxStudy->doesScenarioExist ("situationA", 1)
 std::cout << "Scenario Exists" << std::endl;
else
 std::cout << "Scenario does NOT Exist" << std::endl;

Listing the Scenarios Contained in a Study
If cvxStudy is a Study object that has been retrieved, a program can
obtain a list of the Scenarios unique identifiers that are contained within
the Study with the following code.

Lps::UniqueIdList uidList = cvxStudy->getUidsOfScenarios ();

or a list of names and versions of the Scenarios with

Lps::NameVersionPairList nvList;
nvList = cvxStudy->getNameVersionPairsOfScenarios ();

UniqueIdList is a type definition for a Standard Template Library (STL)
vector of strings. NameVersionPairList is a type definition for a STL
vector of pairs where a pair consists of a string and an unsigned integer.

Managing Components
A LEAPS Concept object is composed of LEAPS Component objects.
The Concept has member methods that provide various functions that
involve the management of Component objects. These member methods
can:

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 User’s Guide

DRAFT 23 02 Apr 1999

• Create a Component object,
• Retrieve a Component object,
• Destroy a Component object,
• Determine the existence of a Component object,
• List Component objects that are contained within the Concept,

and
• Retrieve a Component’s structure (geometry).

Creating a Component
If cvxConcept is a Concept object that has been retrieved, a program can
create a Component with the following code.

Lps::ComponentPtr pump;
pump = cvxConcept->createComponent ("pump", 1);

Retrieving a Component
If cvxConcept is a Concept object that has been retrieved, a program can
retrieve a Component with the following code.

Lps::ComponentPtr pump;
pump = cvxConcept->getComponent ("pump", 1);

Destroying a Component
If cvxConcept is a Concept object that has been retrieved, a program can
destroy a Component with the following code.

cvxConcept->destroyComponent ("pump", 1);

Determining the Existence of a Component
If cvxConcept is a Concept object that has been retrieved, the following
code determines if a Component exists.

If (cvxConcept->doesComponentExist ("pump", 1)
 std::cout << "Component Exists" << std::endl;
else
 std::cout << "Component does NOT Exist" << std::endl;

Listing the Components Contained in a Concept
If cvxConcept is a Concept object that has been retrieved, a program can
obtain a list of the Components unique identifiers that are contained
within the Concept with the following code.

Lps::UniqueIdList uidList = cvxConcept->getUidsOfComponents ();

or a list of names and versions of the Components with

Lps::NameVersionPairList nvList;
nvList = cvxConcept->getNameVersionPairsOfComponents ();

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 User’s Guide

DRAFT 24 02 Apr 1999

UniqueIdList is a type definition for a Standard Template Library (STL)
vector of strings. NameVersionPairList is a type definition for a STL
vector of pairs where a pair consists of a string and an unsigned integer.

Retrieving a Component’s Structure
If pump is a Component object that has been retrieved, a program can
obtain the component’s structure with the following code.

Lps::StructurePtr pumpStructure;
pumpStructure = pump->getComponentStructure ();

Managing Systems
A LEAPS Concept object is composed of LEAPS System objects. The
Concept has member methods that provide various functions that involve
the management of System objects. These member methods can:

• Create a System object,
• Retrieve a System object,
• Destroy a System object,
• Determine the existence of a System object, and
• List System objects that are contained within the Concept.

Creating a System
If cvxConcept is a Concept object that has been retrieved, a program can
create a System with the following code.

Lps::SystemPtr fireMain;
fireMain = cvxConcept->createSystem ("fireMain", 1);

Retrieving a System
If cvxConcept is a Concept object that has been retrieved, a program can
retrieve a System with the following code.

Lps::SystemPtr fireMain;
fireMain = cvxConcept->getSystem ("fireMain", 1);

Destroying a System
If cvxConcept is a Concept object that has been retrieved, a program can
destroy a System with the following code.

cvxConcept->destroySystem ("fireMain", 1);

Determining the Existence of a System
If cvxConcept is a Concept object that has been retrieved, the following
code determines if a System exists.

If (cvxConcept->doesSystemExist ("fireMain", 1)
 std::cout << "System Exists" << std::endl;
else

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 User’s Guide

DRAFT 25 02 Apr 1999

 std::cout << "System does NOT Exist" << std::endl;

Listing the Systems Contained in a Concept
If cvxConcept is a Concept object that has been retrieved, a program can
obtain a list of the Systems unique identifiers that are contained within the
Concept with the following code.

Lps::UniqueIdList uidList = cvxConcept->getUidsOfSystems ();

or a list of names and versions of the Systems with

Lps::NameVersionPairList nvList;
nvList = cvxConcept->getNameVersionPairsOfSystems ();

UniqueIdList is a type definition for a Standard Template Library (STL)
vector of strings. NameVersionPairList is a type definition for a STL
vector of pairs where a pair consists of a string and an unsigned integer.

Managing Connections
A LEAPS Concept object is composed of LEAPS Connection objects.
The Concept has member methods that provide various functions that
involve the management of Connection objects. These member methods
can:

• Create a Connection object,
• Retrieve a Connection object,
• Destroy a Connection object,
• Determine the existence of a Connection object, and
• List Connection objects that are contained within the Concept.

Creating a Connection
If cvxConcept is a Concept object that has been retrieved, a program can
create a Connection with the following code.

Lps::ConnectionPtr fireMainConnection;
fireMainConnection = cvxConcept->createConnection
("fireMainConnection", 1);

Retrieving a Connection
If cvxConcept is a Concept object that has been retrieved, a program can
retrieve a Connection with the following code.

Lps::ConnectionPtr fireMainConnection;
fireMainConnection = cvxConcept->getConnection
("fireMainConnection", 1);

Destroying a Connection
If cvxConcept is a Concept object that has been retrieved, a program can
destroy a Connection with the following code.

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 User’s Guide

DRAFT 26 02 Apr 1999

cvxConcept->destroyConnection ("fireMainConnection", 1);

Determining the Existence of a Connection
If cvxConcept is a Concept object that has been retrieved, the following
code determines if a Connection exists.

If (cvxConcept->doesConnectionExist ("fireMainConnection", 1)
 std::cout << "Connection Exists" << std::endl;
else
 std::cout << "Connection does NOT Exist" << std::endl;

Listing the Connections Contained in a Concept
If cvxConcept is a Concept object that has been retrieved, a program can
obtain a list of the Connections unique identifiers that are contained within
the Concept with the following code.

Lps::UniqueIdList uidList = cvxConcept->getUidsOfConnections ();

or a list of names and versions of the Connections with

Lps::NameVersionPairList nvList;
nvList = cvxConcept->getNameVersionPairsOfConnections ();

UniqueIdList is a type definition for a Standard Template Library (STL)
vector of strings. NameVersionPairList is a type definition for a STL
vector of pairs where a pair consists of a string and an unsigned integer.

Managing Diagrams
A LEAPS Concept object is composed of LEAPS Diagram objects. The
Concept has member methods that provide various functions that involve
the management of Diagram objects. These member methods can:

• Create a Diagram object,
• Retrieve a Diagram object,
• Destroy a Diagram object,
• Determine the existence of a Diagram object, and
• List Diagram objects that are contained within the Concept.

Creating a Diagram
If cvxConcept is a Concept object that has been retrieved, a program can
create a Diagram with the following code.

Lps::DiagramPtr fireMainDiagram;
fireMainDiagram = cvxConcept->createDiagram ("fireMainDiagram",
1);

Retrieving a Diagram
If cvxConcept is a Concept object that has been retrieved, a program can
retrieve a Diagram with the following code.

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 User’s Guide

DRAFT 27 02 Apr 1999

Lps::DiagramPtr fireMainDiagram;
fireMainDiagram = cvxConcept->getDiagram ("fireMainDiagram", 1);

Destroying a Diagram
If cvxConcept is a Concept object that has been retrieved, a program can
destroy a Diagram with the following code.

cvxConcept->destroyDiagram ("fireMainDiagram", 1);

Determining the Existence of a Diagram
If cvxConcept is a Concept object that has been retrieved, the following
code determines if a Diagram exists.

If (cvxConcept->doesDiagramExist ("fireMainDiagram", 1)
 std::cout << "Diagram Exists" << std::endl;
else
 std::cout << "Diagram does NOT Exist" << std::endl;

Listing the Diagrams Contained in a Concept
If cvxConcept is a Concept object that has been retrieved, a program can
obtain a list of the Diagrams unique identifiers that are contained within
the Concept with the following code.

Lps::UniqueIdList uidList = cvxConcept->getUidsOfDiagrams ();

or a list of names and versions of the Diagrams with

Lps::NameVersionPairList nvList;
nvList = cvxConcept->getNameVersionPairsOfDiagrams ();

UniqueIdList is a type definition for a Standard Template Library (STL)
vector of strings. NameVersionPairList is a type definition for a STL
vector of pairs where a pair consists of a string and an unsigned integer.

Managing LEAPS Geometry Objects
A LEAPS Structure Object is part of a LEAPS Concept object or a LEAPS
Component object.. The Structure object manages all LEAPS geometry
objects. A Structure object has member methods that provide various
functions that involve the management of LEAPS geometry objects.
These member methods can:

• Create LEAPS geometry objects,
• Retrieve LEAPS geometry objects,
• Destroy LEAPS geometry objects,
• Determine the existence of LEAPS geometry objects, and
• List LEAPS geometry objects that are contained within the

Structure.

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 User’s Guide

DRAFT 28 02 Apr 1999

Creating a Surface
A LEAPS surface is defined by a non-uniform rational B-spline (NURBS).
The spline is defined by a STL vector of SplineDomainVaribles and a STL
vector of SplineRangeVariables. If the spline is rational a STL vector of
weights is also part of the spline. A SplineDomainVariable is defined with
a label, the order, and the knots associated with the domain variable. A
SplineRangeVariable is defined by a label and the control points
associated with the range variable. There a two SplineDomainVariables
that are the u and v parametric variables of the spline and three
SplineRangeVariables that are the x, y, and z control points. If structure
is a Structure object that has been retrieved from a Concept or a
Component, a program can create a Surface with the following code.

// define the order of the domain variable
Lps::Uint32 order4 = 4;

// define array of knots
Lps::Real64 knotArray[9] = {0, 0, 0, 0, 0.5, 1, 1, 1, 1};
std::vector <Lps::Real64> knots;
for (int i = 0 ; i < 9 ; ++i)
 knots.push_back (knotArray[i]);

// create u domain variable
Lps::SplineDomainVariable uEntry;
uEntry.create (knots, order4, "u");

// create v domain variable using the same knots and order
Lps::SplineDomainVariable vEntry;
vEntry.create (knots, order4, "v");

// create the STL vector of domain variables
std::vector<Lps::SplineDomainVariable> domainData;
domainData.push_back (uEntry);
domainData.push_back (vEntry);

// create STL vector of weights
std::vector <Lps::Real64> weights;
for (i = 0 ; i < 25 ; ++i)
 weights.push_back (1.0);

// create STL vector of x control points
Lps::Real64 xCtlPtArray[] = {0,5,10,15,20,0,5,10,15,20,0,5,10,15,
 20, 0,5,10,15,20,0,5,10,15,20};
std::vector <Lps::Real64> xCtlPts;
for (i = 0 ; i < 25 ; ++i)
 xCtlPts.push_back (xCtlPtArray[i]);

// create x SplineRangeVariable
Lps::SplineRangeVariable xEntry;
xEntry.create (xCtlPts, "x");

// create STL vector of y control points
Lps::Real64 yCtlPtArray[] = {-10,-10,-10,-10,-10,-5,-5,-5,-5,
 -5,0,0,0,0,0,5,5,5,5,5,10,10,10,
 10,10};
std::vector <Lps::Real64> yCtlPts;
for (i = 0 ; i < 25 ; ++i)
 yCtlPts.push_back (yCtlPtArray[i]);

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 User’s Guide

DRAFT 29 02 Apr 1999

// create y SplineRangeVariable
Lps::SplineRangeVariable yEntry;
yEntry.create (yCtlPts, "y");

// create STL vector of z control points
Lps::Real64 zCtlPtArray[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
 0,0,0,0,0,0,0,0};
std::vector <Lps::Real64> zCtlPts;
for (i = 0 ; i < 25 ; ++i)
 zCtlPts.push_back (zCtlPtArray[i]);

// create z SplineRangeVariable
Lps::SplineRangeVariable zEntry;
zEntry.create (zCtlPts, "z");

// create STL vector of range variables
std::vector<Lps::SplineRangeVariable> rangeData;
rangeData.push_back (xEntry);
rangeData.push_back (yEntry);
rangeData.push_back (zEntry);

Lps::SurfacePtr surface;
surface = structure->createSurface ("bf41", 1, domainData,
 rangeData, weights);

Other methods to create a Surface are also available and can be found in
the LEAPS reference manual [4].

Retrieving a Surface
If structure is a Structure object that has been retrieved from a Concept or
a Component, a program can retrieve a Surface with the following code.

Lps::SurfacePtr surface;
surface = structure->getSurface ("bf41", 1);

Destroying a Surface
If structure is a Structure object that has been retrieved from a Concept or
a Component, a program can destroy a Surface with the following code.

structure->destroySurface ("bf41", 1);

Determining the Existence of a Surface
If structure is a Structure object that has been retrieved from a Concept or
a Component, a program can determine if a Surface exists with the
following code.

If (structure->doesSurfaceExist ("bf41", 1)
 std::cout << "Surface Exists" << std::endl;
else
 std::cout << "Surface does NOT Exist" << std::endl;

Listing the Surfaces Contained in a Structure
If structure is a Structure object that has been retrieved from a Concept or
a Component, a program can obtain a list of the Surfaces unique
identifiers that are contained within the Structure with the following code.

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 User’s Guide

DRAFT 30 02 Apr 1999

Lps::UniqueIdList uidList = structure->getUidsOfSurfaces ();

or a list of names and versions of the Surfaces with

Lps::NameVersionPairList nvList;
nvList = structure->getNameVersionPairsOfSurfaces ();

UniqueIdList is a type definition for a Standard Template Library (STL)
vector of strings. NameVersionPairList is a type definition for a STL
vector of pairs where a pair consists of a string and an unsigned integer.

Creating a Pcurve
A LEAPS Pcurve is parametric curve that lies on a LEAPS Surface. It is
defined by a non-uniform rational B-spline (NURBS). The spline is
defined by a STL vector of SplineDomainVaribles and a STL vector of
SplineRangeVariables. If the spline is rational a STL vector of weights is
also part of the spline. A SplineDomainVariable is defined with a label,
the order, and the knots associated with the domain variable. A
SplineRangeVariable is defined by a label and the control points
associated with the range variable. There one SplineDomainVariable that
is s parametric variable of the spline and two SplineRangeVariables that
are the u and v control points. If structure is a Structure object that has
been retrieved from a Concept or a Component, a program can create a
Pcurve with the following code.

// define the order of the domain variable
Lps::Uint32 order4 = 4;

// define array of knots
Lps::Real64 knotArray[9] = {0, 0, 0, 0, 0.5, 1, 1, 1, 1};
std::vector <Lps::Real64> knots;
for (int i = 0 ; i < 9 ; ++i)
 knots.push_back (knotArray[i]);

// create s domain variable
Lps::SplineDomainVariable sEntry;
sEntry.create (knots, order4, "s");

// create the STL vector of domain variables
std::vector<Lps::SplineDomainVariable> domainData;
domainData.push_back (sEntry);

// create STL vector of weights
std::vector <Lps::Real64> weights;
for (i = 0 ; i < 5 ; ++i)
 weights.push_back (1.0);

// create STL vector of u control points
Lps::Real64 uCtlPtArray[] = {0,.25,.5,.75,1};
std::vector <Lps::Real64> uCtlPts;
for (i = 0 ; i < 5 ; ++i)
 uCtlPts.push_back (uCtlPtArray[i]);

// create u SplineRangeVariable
Lps::SplineRangeVariable uEntry;
uEntry.create (uCtlPts, "u");

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 User’s Guide

DRAFT 31 02 Apr 1999

// create STL vector of v control points
Lps::Real64 vCtlPtArray[] = {0,0,0,0,0};
std::vector <Lps::Real64> vCtlPts;
for (i = 0 ; i < 5 ; ++i)
 vCtlPts.push_back (vCtlPtArray[i]);

// create v SplineRangeVariable
Lps::SplineRangeVariable vEntry;
vEntry.create (vCtlPts, "v");

// create STL vector of range variables
std::vector<Lps::SplineRangeVariable> rangeData;
rangeData.push_back (uEntry);
rangeData.push_back (vEntry);

// retrieve surface that the curve lies on
Lps::SurfacePtr mappedTo;
mappedTo = structure->getSurface ("bf41", 1);

Lps::PcurvePtr Pcurve;
Pcurve = structure->createPcurve ("bf1", 1, mappedTo, domainData,
 rangeData, weights);

Other methods to create a Pcurve are also available and can be found in
the LEAPS reference manual [4].

Retrieving a Pcurve
If structure is a Structure object that has been retrieved from a Concept or
a Component, a program can retrieve a Pcurve with the following code.

Lps::PcurvePtr Pcurve;
Pcurve = structure->getPcurve ("bf1", 1);

Destroying a Pcurve
If structure is a Structure object that has been retrieved from a Concept or
a Component, a program can destroy a Pcurve with the following code.

structure->destroyPcurve ("bf1", 1);

Determining the Existence of a Pcurve
If structure is a Structure object that has been retrieved from a Concept or
a Component, a program can determine if a Pcurve exists with the
following code.

If (structure->doesPcurveExist ("bf1", 1)
 std::cout << "Pcurve Exists" << std::endl;
else
 std::cout << "Pcurve does NOT Exist" << std::endl;

Listing the Pcurves Contained in a Structure
If structure is a Structure object that has been retrieved from a Concept or
a Component, a program can obtain a list of the Pcurves unique
identifiers that are contained within the Structure with the following code.

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 User’s Guide

DRAFT 32 02 Apr 1999

Lps::UniqueIdList uidList = structure->getUidsOfPcurves ();

or a list of names and versions of the Pcurves with

Lps::NameVersionPairList nvList;
nvList = structure->getNameVersionPairsOfPcurves ();

UniqueIdList is a type definition for a Standard Template Library (STL)
vector of strings. NameVersionPairList is a type definition for a STL
vector of pairs where a pair consists of a string and an unsigned integer.

Creating a Ppoint
A LEAPS Ppoint is parametric point that lies on a LEAPS Pcurve. If
structure is a Structure object that has been retrieved from a Concept or a
Component, a program can create a Ppoint with the following code.

Lps::Real64 value = 0.0;
Lps::PcurvePtr mappedTo = structure->getPcurve ("bf1", 1);
Lps::PpointPtr ppoint;
ppoint = structure->createPpoint ("ep1", 1, mappedTo, value);

Other methods to create a Ppoint are also available and can be found in
the LEAPS reference manual [4].

Retrieving a Ppoint
If structure is a Structure object that has been retrieved from a Concept or
a Component, a program can retrieve a Ppoint with the following code.

Lps::PpointPtr ppoint;
ppoint = structure->getPpoint ("ep1", 1);

Destroying a Ppoint
If structure is a Structure object that has been retrieved from a Concept or
a Component, a program can destroy a Ppoint with the following code.

structure->destroyPpoint ("ep1", 1);

Determining the Existence of a Ppoint
If structure is a Structure object that has been retrieved from a Concept or
a Component, a program can determine if a Ppoint exists with the
following code.

If (structure->doesPpointExist ("ep1", 1)
 std::cout << "Ppoint Exists" << std::endl;
else
 std::cout << "Ppoint does NOT Exist" << std::endl;

Listing the Ppoints Contained in a Structure
If structure is a Structure object that has been retrieved from a Concept or
a Component, a program can obtain a list of the Ppoints unique identifiers
that are contained within the Structure with the following code.

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 User’s Guide

DRAFT 33 02 Apr 1999

Lps::UniqueIdList uidList = structure->getUidsOfPpoints ();

or a list of names and versions of the Ppoints with

Lps::NameVersionPairList nvList;
nvList = structure->getNameVersionPairsOfPpoints ();

UniqueIdList is a type definition for a Standard Template Library (STL)
vector of strings. NameVersionPairList is a type definition for a STL
vector of pairs where a pair consists of a string and an unsigned integer.

Creating a CoPoint
A LEAPS CoPoint is a group of LEAPS Ppoint objects that are associated
with the same location in model space. If structure is a Structure object
that has been retrieved from a Concept or a Component, a program can
create a CoPoint with the following code.

// create the cartesian location at which the Ppoints located
Lps::CartesianLocation pt (0.0, -10.0, 0.0);
// create a STL vector of the associated Ppoints
Lps::PpointPtrList associatedPpoints;
associatedPpoints.push_back (structure->getPpoint ("ep1_1", 1));
associatedPpoints.push_back (structure->getPpoint ("ep4_2", 1));
associatedPpoints.push_back (structure->getPpoint ("ep13_1", 1));
associatedPpoints.push_back (structure->getPpoint ("ep16_2", 1));
associatedPpoints.push_back (structure->getPpoint ("ep23_2", 1));
associatedPpoints.push_back (structure->getPpoint ("ep24_1", 1));

// create the CoPpoint
Lps::CoPointPtr coPoint;
coPoint = structure->createCoPoint ("cp1", 1, associatedPpoints,
 pt);

Other methods that create a CoPoint are also available and can be found
in the LEAPS reference manual [4].

Retrieving a CoPoint
If structure is a Structure object that has been retrieved from a Concept or
a Component, a program can retrieve a CoPoint with the following code.

Lps::CoPointPtr coPoint;
coPoint = structure->getCoPoint ("cp1", 1);

Destroying a CoPoint
If structure is a Structure object that has been retrieved from a Concept or
a Component, a program can destroy a CoPoint with the following code.

structure->destroyCoPoint ("cp1", 1);

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 User’s Guide

DRAFT 34 02 Apr 1999

Determining the Existence of a CoPoint
If structure is a Structure object that has been retrieved from a Concept or
a Component, a program can determine if a CoPoint exists with the
following code.

If (structure->doesCoPointExist ("cp1", 1)
 std::cout << "CoPoint Exists" << std::endl;
else
 std::cout << "CoPoint does NOT Exist" << std::endl;

Listing the CoPoints Contained in a Structure
If structure is a Structure object that has been retrieved from a Concept or
a Component, a program can obtain a list of the CoPoints unique
identifiers that are contained within the Structure with the following code.

Lps::UniqueIdList uidList = structure->getUidsOfCoPoints ();

or a list of names and versions of the CoPoints with

Lps::NameVersionPairList nvList;
nvList = structure->getNameVersionPairsOfCoPoints ();

UniqueIdList is a type definition for a Standard Template Library (STL)
vector of strings. NameVersionPairList is a type definition for a STL
vector of pairs where a pair consists of a string and an unsigned integer.

Creating an Edge
A LEAPS Edge is an oriented segment of a LEAPS Pcurve object. The
Edge is defined by specifying the start and end Ppoints of the Edge. If
structure is a Structure object that has been retrieved from a Concept or a
Component, a program can create an Edge with the following code.

Lps::PpointPtr startPt;
startPt = structure->getPpoint ("ep1_1", 1);

Lps::PpointPtr endPt;
endPt = structure->getPpoint ("ep1_2", 1);

// create the Edge
Lps::EdgePtr edge;
edge = structure->createEdge ("ec1_1a", 1, startPt, endPt);

Other methods that create an Edge are also available and can be found
in the LEAPS reference manual [4].

Retrieving an Edge
If structure is a Structure object that has been retrieved from a Concept or
a Component, a program can retrieve an Edge with the following code.

Lps::EdgePtr edge;
edge = structure->getEdge ("ec1_1a", 1);

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 User’s Guide

DRAFT 35 02 Apr 1999

Destroying an Edge
If structure is a Structure object that has been retrieved from a Concept or
a Component, a program can destroy an Edge with the following code.

structure->destroyEdge ("ec1_1a", 1);

Determining the Existence of an Edge
If structure is a Structure object that has been retrieved from a Concept or
a Component, a program can determine if an Edge exists with the
following code.

If (structure->doesEdgeExist ("ec1_1a", 1)
 std::cout << "Edge Exists" << std::endl;
else
 std::cout << "Edge does NOT Exist" << std::endl;

Listing the Edges Contained in a Structure
If structure is a Structure object that has been retrieved from a Concept or
a Component, a program can obtain a list of the Edges unique identifiers
that are contained within the Structure with the following code.

Lps::UniqueIdList uidList = structure->getUidsOfEdges ();

or a list of names and versions of the Edges with

Lps::NameVersionPairList nvList;
nvList = structure->getNameVersionPairsOfEdges ();

UniqueIdList is a type definition for a Standard Template Library (STL)
vector of strings. NameVersionPairList is a type definition for a STL
vector of pairs where a pair consists of a string and an unsigned integer.

Creating a CoEdge
A LEAPS CoEdge is a group of LEAPS Edge objects that are associated
with the same location in model space. A CoEdge generally repesents
the intersection of two surfaces. If structure is a Structure object that has
been retrieved from a Concept or a Component, a program can create a
CoEdge with the following code.

// create a STL vector of the associated Edges
Lps::EdgePtrList associatedEdges;
associatedEdges.push_back (structure->getEdge ("ec1_1a", 1));
associatedEdges.push_back (structure->getEdge ("ec13_1a", 1));

// create the CoEdge
Lps::CoEdgePtr coEdge;
coEdge = structure->createCoEdge ("ce1", 1, associatedEdges)

Other methods that create a CoEdge are also available and can be found
in the LEAPS reference manual [4].

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 User’s Guide

DRAFT 36 02 Apr 1999

Retrieving a CoEdge
If structure is a Structure object that has been retrieved from a Concept or
a Component, a program can retrieve a CoEdge with the following code.

Lps::CoEdgePtr coEdge;
coEdge = structure->getCoEdge ("ce1", 1);

Destroying a CoEdge
If structure is a Structure object that has been retrieved from a Concept or
a Component, a program can destroy a CoEdge with the following code.

structure->destroyCoEdge ("ce1", 1);

Determining the Existence of a CoEdge
If structure is a Structure object that has been retrieved from a Concept or
a Component, a program can determine if a CoEdge exists with the
following code.

If (structure->doesCoEdgeExist ("ce1", 1)
 std::cout << "CoEdge Exists" << std::endl;
else
 std::cout << "CoEdge does NOT Exist" << std::endl;

Listing the CoEdges Contained in a Structure
If structure is a Structure object that has been retrieved from a Concept or
a Component, a program can obtain a list of the CoEdges unique
identifiers that are contained within the Structure with the following code.

Lps::UniqueIdList uidList = structure->getUidsOfCoEdges ();

or a list of names and versions of the CoEdges with

Lps::NameVersionPairList nvList;
nvList = structure->getNameVersionPairsOfCoEdges ();

UniqueIdList is a type definition for a Standard Template Library (STL)
vector of strings. NameVersionPairList is a type definition for a STL
vector of pairs where a pair consists of a string and an unsigned integer.

Creating an EdgeLoop
A LEAPS EdgeLoop is a set of connected LEAPS Edge objects that form
a closed loop that is not self intersecting. If structure is a Structure object
that has been retrieved from a Concept or a Component, a program can
create an EdgeLoop with the following code.

// create a STL vector of the connected Edges
Lps::EdgePtrList connectedEdges;
connectedEdges.push_back (structure->getEdge ("ec1_1a", 1));
connectedEdges.push_back (structure->getEdge ("ec5_2a", 1));
connectedEdges.push_back (structure->getEdge ("ec5_1a", 1));
connectedEdges.push_back (structure->getEdge ("ec3_2a", 1));
connectedEdges.push_back (structure->getEdge ("ec4_1a", 1));

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 User’s Guide

DRAFT 37 02 Apr 1999

// create the EdgeLoop
Lps::EdgeLoopPtr edgeLoop;
edgeLoop = structure->createEdgeLoop ("el_1a", 1, connectedEdges)

Other methods that create an EdgeLoop are also available and can be
found in the LEAPS reference manual [4].

Retrieving an EdgeLoop
If structure is a Structure object that has been retrieved from a Concept or
a Component, a program can retrieve an EdgeLoop with the following
code.

Lps::EdgeLoopPtr edgeLoop;
edgeLoop = structure->getEdgeLoop ("el_1a", 1);

Destroying an EdgeLoop
If structure is a Structure object that has been retrieved from a Concept or
a Component, a program can destroy an EdgeLoop with the following
code.

structure->destroyEdgeLoop ("el_1a", 1);

Determining the Existence of an EdgeLoop
If structure is a Structure object that has been retrieved from a Concept or
a Component, a program can determine if an EdgeLoop exists with the
following code.

If (structure->doesEdgeLoopExist ("el_1a", 1)
 std::cout << "EdgeLoop Exists" << std::endl;
else
 std::cout << "EdgeLoop does NOT Exist" << std::endl;

Listing the EdgeLoops Contained in a Structure
If structure is a Structure object that has been retrieved from a Concept or
a Component, a program can obtain a list of the EdgeLoops unique
identifiers that are contained within the Structure with the following code.

Lps::UniqueIdList uidList = structure->getUidsOfEdgeLoops ();

or a list of names and versions of the EdgeLoops with

Lps::NameVersionPairList nvList;
nvList = structure->getNameVersionPairsOfEdgeLoops ();

UniqueIdList is a type definition for a Standard Template Library (STL)
vector of strings. NameVersionPairList is a type definition for a STL
vector of pairs where a pair consists of a string and an unsigned integer.

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 User’s Guide

DRAFT 38 02 Apr 1999

Creating a Face
A LEAPS Face is a trimmed NURBS surface. It is defined by a LEAPS
EdgeLoop that is the outer boundary of the Face and any number of non-
intersecting EdgeLoops that are holes in the Face. If structure is a
Structure object that has been retrieved from a Concept or a Component,
a program can create an Face with the following code.

// retrieve the EdgeLoop that is the outer boundary of the Face
Lps::EdgeLoopPtr outerLoop;
outerLoop = structure->getEdgeLoop ("el_1a", 1);

// no holes – create empty STL vector of EdgeLoops
Lps::EdgeLoopPtrList innerLoops;

// create the Face
Lps::FacePtr face;
face = structure->createFace ("fa1", 1, outerLoop, innerLoops);

Other methods that create a Face are also available and can be found in
the LEAPS reference manual [4].

Retrieving a Face
If structure is a Structure object that has been retrieved from a Concept or
a Component, a program can retrieve a Face with the following code.

Lps::FacePtr face;
face = structure->getFace ("fa1", 1);

Destroying a Face
If structure is a Structure object that has been retrieved from a Concept or
a Component, a program can destroy a Face with the following code.

structure->destroyFace ("fa1", 1);

Determining the Existence of a Face
If structure is a Structure object that has been retrieved from a Concept or
a Component, a program can determine if a Face exists with the following
code.

If (structure->doesFaceExist ("fa1", 1)
 std::cout << "Face Exists" << std::endl;
else
 std::cout << "Face does NOT Exist" << std::endl;

Listing the Faces Contained in a Structure
If structure is a Structure object that has been retrieved from a Concept or
a Component, a program can obtain a list of the Faces unique identifiers
that are contained within the Structure with the following code.

Lps::UniqueIdList uidList = structure->getUidsOfFaces ();

or a list of names and versions of the Faces with

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 User’s Guide

DRAFT 39 02 Apr 1999

Lps::NameVersionPairList nvList;
nvList = structure->getNameVersionPairsOfFaces ();

UniqueIdList is a type definition for a Standard Template Library (STL)
vector of strings. NameVersionPairList is a type definition for a STL
vector of pairs where a pair consists of a string and an unsigned integer.

Creating an OrientedClosedShell
A LEAPS OrientedClosedShell is a set of LEAPS Face objects that form a
closed shell that is oriented. If structure is a Structure object that has
been retrieved from a Concept or a Component, a program can create an
OrientedClosedShell with the following code.

// create a STL vector of the connected Faces
Lps::FacePtrList connectedFaces;
connectedFaces.push_back (structure->getFace ("fa1", 1));
connectedFaces.push_back (structure->getFace ("fa23", 1));
connectedFaces.push_back (structure->getFace ("fa29", 1));
connectedFaces.push_back (structure->getFace ("fa17", 1));
connectedFaces.push_back (structure->getFace ("fa31", 1));
connectedFaces.push_back (structure->getFace ("fa9", 1));

// create the OrientedClosedShell
Lps::OrientedClosedShellPtr shell;
shell = structure->createOrientedClosedShell ("os_comp1", 1,
 connectedFaces)

Other methods that create an OrientedClosedShell are also available and
can be found in the LEAPS reference manual [4].

Retrieving an OrientedClosedShell
If structure is a Structure object that has been retrieved from a Concept or
a Component, a program can retrieve an OrientedClosedShell with the
following code.

Lps::OrientedClosedShellPtr shell;
shell = structure->getOrientedClosedShell ("os_comp1", 1);

Destroying an OrientedClosedShell
If structure is a Structure object that has been retrieved from a Concept or
a Component, a program can destroy an OrientedClosedShell with the
following code.

structure->destroyOrientedClosedShell ("os_comp1", 1);

Determining the Existence of an OrientedClosedShell
If structure is a Structure object that has been retrieved from a Concept or
a Component, a program can determine if an OrientedClosedShell exists
with the following code.

If (structure->doesOrientedClosedShellExist ("os_comp1", 1)
 std::cout << "OrientedClosedShell Exists" << std::endl;

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 User’s Guide

DRAFT 40 02 Apr 1999

else
 std::cout << "OrientedClosedShell does NOT Exist" << std::endl;

Listing the OrientedClosedShells Contained in a Structure
If structure is a Structure object that has been retrieved from a Concept or
a Component, a program can obtain a list of the OrientedClosedShells
unique identifiers that are contained within the Structure with the following
code.

Lps::UniqueIdList uidList;
uidList = structure->getUidsOfOrientedClosedShells ();

or a list of names and versions of the OrientedClosedShells with

Lps::NameVersionPairList nvList;
nvList = structure->getNameVersionPairsOfOrientedClosedShells ();

UniqueIdList is a type definition for a Standard Template Library (STL)
vector of strings. NameVersionPairList is a type definition for a STL
vector of pairs where a pair consists of a string and an unsigned integer.

Creating a Solid
A LEAPS Solid is a boundary-represented (BREP) solid. It is defined by
a LEAPS OrientedClosedShell object that is the outer boundary of the
Solid and any number of non-intersecting OrientedClosedShell objects
that are voids in the Solid. If structure is a Structure object that has been
retrieved from a Concept or a Component, a program can create a Solid
with the following code.

// retrieve the OrientedClosedShell that is the outer boundary
// of the Solid
Lps::OrientedClosedShellPtr outerShell;
outerShell = structure->getOrientedClosedShell ("os_comp1", 1);

// no voids – create empty STL vector of OrientedClosedShells
Lps::OrientedClosedShellPtrList voidShells;

// create the Solid
Lps::SolidPtr solid;
solid = structure->createSolid ("so_comp1", 1, outerShell,
 voidShells);

Other methods that create a Solid are also available and can be found in
the LEAPS reference manual [4].

Retrieving a Solid
If structure is a Structure object that has been retrieved from a Concept or
a Component, a program can retrieve a Solid with the following code.

Lps::SolidPtr solid;
solid = structure->getSolid ("so_comp1", 1);

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 User’s Guide

DRAFT 41 02 Apr 1999

Destroying a Solid
If structure is a Structure object that has been retrieved from a Concept or
a Component, a program can destroy a Solid with the following code.

structure->destroySolid ("so_comp1", 1);

Determining the Existence of a Solid
If structure is a Structure object that has been retrieved from a Concept or
a Component, a program can determine if a Solid exists with the following
code.

If (structure->doesSolidExist ("so_comp1", 1)
 std::cout << "Solid Exists" << std::endl;
else
 std::cout << "Solid does NOT Exist" << std::endl;

Listing the Solids Contained in a Structure
If structure is a Structure object that has been retrieved from a Concept or
a Component, a program can obtain a list of the Solids unique identifiers
that are contained within the Structure with the following code.

Lps::UniqueIdList uidList = structure->getUidsOfSolids ();

or a list of names and versions of the Solids with

Lps::NameVersionPairList nvList;
nvList = structure->getNameVersionPairsOfSolids ();

UniqueIdList is a type definition for a Standard Template Library (STL)
vector of strings. NameVersionPairList is a type definition for a STL
vector of pairs where a pair consists of a string and an unsigned integer.

Creating a TopologicalView
A LEAPS TopologicalView is a view of the geometry that typically
represents traditional CAD entities. In particular, a TopologicalView is a
LEAPS Solid, Face, or Surface that has properties. If structure is a
Structure object that has been retrieved from a Concept or a Component,
a program can create a TopologicalView that is a Face with the following
code.

// retrieve the Face that the TopologicalView represents
Lps::FacePtr face;
face = structure->getFace ("fa17", 1);

// create the TopologicalView
Lps::TopologicalViewPtr tView;
tView = structure->createTopologicalView ("topv_hulls_plate1", 1,
 face);

Other methods that create a TopologicalView are also available and can
be found in the LEAPS reference manual [4].

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 User’s Guide

DRAFT 42 02 Apr 1999

Retrieving a TopologicalView
If structure is a Structure object that has been retrieved from a Concept or
a Component, a program can retrieve a TopologicalView with the
following code.

Lps::TopologicalViewPtr tView;
tView = structure->getTopologicalView ("topv_hulls_plate1", 1);

Destroying a TopologicalView
If structure is a Structure object that has been retrieved from a Concept or
a Component, a program can destroy a TopologicalView with the
following code.

structure->destroyTopologicalView ("topv_hulls_plate1", 1);

Determining the Existence of a TopologicalView
If structure is a Structure object that has been retrieved from a Concept or
a Component, a program can determine if a TopologicalView exists with
the following code.

If (structure->doesTopologicalViewExist ("topv_hulls_plate1", 1)
 std::cout << "TopologicalView Exists" << std::endl;
else
 std::cout << "TopologicalView does NOT Exist" << std::endl;

Listing the TopologicalViews Contained in a Structure
If structure is a Structure object that has been retrieved from a Concept or
a Component, a program can obtain a list of the TopologicalViews unique
identifiers that are contained within the Structure with the following code.

Lps::UniqueIdList uidList;
uidList = structure->getUidsOfTopologicalViews ();

or a list of names and versions of the TopologicalViews with

Lps::NameVersionPairList nvList;
nvList = structure->getNameVersionPairsOfTopologicalViews ();

UniqueIdList is a type definition for a Standard Template Library (STL)
vector of strings. NameVersionPairList is a type definition for a STL
vector of pairs where a pair consists of a string and an unsigned integer.

Creating a CommonView
A LEAPS CommonView is group of LEAPS TopologicalView objects and
LEAPS CommonView objects that represent a logical view of the
geometry. If structure is a Structure object that has been retrieved from a
Concept or a Component, a program can create a CommonView with the
following code.

// retrieve TopologicalViews that compose the CommonView
Lps::TopologicalViewPtrList topViews;

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 User’s Guide

DRAFT 43 02 Apr 1999

topViews.push_back (structure->getTopologicalView
 ("topv_deck1_plate1", 1));
topViews.push_back (structure->getTopologicalView
 ("topv_deck2_plate1", 1));
topViews.push_back (structure->getTopologicalView
 ("topv_hullp_plate1", 1));
topViews.push_back (structure->getTopologicalView
 ("topv_hulls_plate1", 1));
topViews.push_back (structure->getTopologicalView
 ("topv_trans2_plate1", 1));
topViews.push_back (structure->getTopologicalView
 ("topv_trans2_plate2", 1));

// no CommonViews that are a part of this CommonView – create
// empty STL vector of CommonViews
 Lps::CommonViewsPtrList comViews;

// create the CommonView
Lps::CommonViewPtr commonView;
commonView = structure->createCommonView ("comv_comp1", 1,
 topViews, comViews);

Other methods that create a CommonView are also available and can be
found in the LEAPS reference manual [4].

Retrieving a CommonView
If structure is a Structure object that has been retrieved from a Concept or
a Component, a program can retrieve a CommonView with the following
code.

Lps::CommonViewPtr commonView;
commonView = structure->getCommonView ("comv_comp1", 1);

Destroying a CommonView
If structure is a Structure object that has been retrieved from a Concept or
a Component, a program can destroy a CommonView with the following
code.

structure->destroyCommonView ("comv_comp1", 1);

Determining the Existence of a CommonView
If structure is a Structure object that has been retrieved from a Concept or
a Component, a program can determine if a CommonView exists with the
following code.

If (structure->doesCommonViewExist ("comv_comp1", 1)
 std::cout << "CommonView Exists" << std::endl;
else
 std::cout << "CommonView does NOT Exist" << std::endl;

Listing the CommonViews Contained in a Structure
If structure is a Structure object that has been retrieved from a Concept or
a Component, a program can obtain a list of the CommonViews unique
identifiers that are contained within the Structure with the following code.

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 User’s Guide

DRAFT 44 02 Apr 1999

Lps::UniqueIdList uidList = structure->getUidsOfCommonViews ();

or a list of names and versions of the CommonViews with

Lps::NameVersionPairList nvList;
nvList = structure->getNameVersionPairsOfCommonViews ();

UniqueIdList is a type definition for a Standard Template Library (STL)
vector of strings. NameVersionPairList is a type definition for a STL
vector of pairs where a pair consists of a string and an unsigned integer.

Managing Materials for LEAPS Objects
Materials are represented by LEAPS Material objects and LEAPS
MaterialGroup objects. These objects are associated with the the LEAPS
Structure class, the LEAPS CommonView class, and the LEAPS
TopologicalView class. These classes manage LEAPS Material and
MaterialGroup objects that are associated with them. These classes
have member methods that provide various functions that involve Material
and MaterialGroup objects. These member methods can:

• Create a Material or MaterialGroup object,
• Retrieve a Material or MaterialGroup object,
• Destroy a Material or MaterialGroup object,
• Determine the existence of a Material or MaterialGroup object,

and
• List Material and MaterialGroup objects that are managed by

the class.

Creating a Material for a LEAPS Object
If the LEAPS object has materials, a method with the name
“createMaterial” is available to create a Material. If structure is a LEAPS
Structure object that has been retrieved from a Concept, a program can
create a Material to be associated with the structure with the following
code.

// create material for the structure
Lps::MaterialPtr hySteel;
hySteel = structure->createMaterial ("hySteel", 1);

Retrieving a Material for a LEAPS Object
If the LEAPS object has materials, a method with the name “getMaterial”
is available to retrieve a Material. If structure is a LEAPS Structure object
that has been retrieved from a Concept, a program can retrieve a Material
that has been associated with the structure with the following code.

Lps::MaterialPtr hySteel;
hySteel = structure->getMaterial ("hySteel", 1);

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 User’s Guide

DRAFT 45 02 Apr 1999

Destroying a Material for a LEAPS Object
If the LEAPS object has materials, a method with the name
“destroyMaterial” is available to destroy a Material. If structure is a
LEAPS Structure object that has been retrieved from a Concept, a
program can destroy a Material that has been associated with the
structure with the following code.

structure->destroyMaterial ("hySteel", 1);

Determining the Existence of a Material for a LEAPS Object
If the LEAPS object has materials, a method with the name
“doesMaterialExists” is available to determine if a Material is associated
with the LEAPS object. If structure is a LEAPS Structure object that has
been retrieved from a Concept, a program can determine if a Material is
associated with the structure with the following code.

If (structure->doesMaterialExist ("hySteel", 1)
 std::cout << "Material Exists" << std::endl;
else
 std::cout << "Material does NOT Exist" << std::endl;

Listing the Materials Managed by a LEAPS Object
If the LEAPS object has materials, a method with the name
“getUidsOfMaterials” is available to retrieve a list of the unique identifiers
of the Material objects that are associated with the LEAPS object. If
structure is a LEAPS Structure object that has been retrieved from a
Concept, a program can retrieve the list of unique identifiers of the
Material objects associated with the structure with the following code.

Lps::UniqueIdList uidList = structure->getUidsOfMaterials ();

or a list of names and versions of the Material objects with

Lps::NameVersionPairList nvList;
nvList = structure->getNameVersionPairsOfMaterials ();

UniqueIdList is a type definition for a Standard Template Library (STL)
vector of strings. NameVersionPairList is a type definition for a STL
vector of pairs where a pair consists of a string and an unsigned integer.

Creating a MaterialGroup for a LEAPS Object
If the LEAPS object has materials, a method with the name
“createMaterialGroup” is available to create a MaterialGroup. If structure
is a LEAPS Structure object that has been retrieved from a Concept, a
program can create a MaterialGroup to be associated with structure with
the following code.

// create a material group for a composite for the structure
Lps::MaterialGroupPtr composite;
composite = structure->createMaterialGroup ("Composite", 1,);

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 User’s Guide

DRAFT 46 02 Apr 1999

Retrieving a MaterialGroup for a LEAPS Object
If the LEAPS object has materials, a method with the name
“getMaterialGroup” is available to retrieve a MaterialGroup. If structure is
a LEAPS Structure object that has been retrieved from a Concept, a
program can retrieve a MaterialGroup that has been associated with the
structure with the following code.

Lps::MaterialGroupPtr composite;
composite = structure->getMaterialGroup ("Composite", 1);

Destroying a MaterialGroup for a LEAPS Object
If the LEAPS object has materials, a method with the name
“destroyMaterialGroup” is available to destroy a MaterialGroup. If
structure is a LEAPS Structure object that has been retrieved from a
Concept, a program can destroy a MaterialGroup that has been
associated with the structure with the following code.

structure->destroyMaterialGroup ("Composite", 1);

Determining the Existence of a MaterialGroup for a LEAPS
Object

If the LEAPS object has materials, a method with the name
“doesMaterialGroupExists” is available to determine if a MaterialGroup is
associated with the LEAPS object. If structure is a LEAPS Structure
object that has been retrieved from a Concept, a program can determine
if a MaterialGroup is associated with the structure with the following code.

If (structure->doesMaterialGroupExist ("Composite", 1)
 std::cout << "MaterialGroup Exists" << std::endl;
else
 std::cout << "MaterialGroup does NOT Exist" << std::endl;

Listing the MaterialGroups Managed by a LEAPS Object
If the LEAPS object has materials, a method with the name
“getUidsOfMaterialGroups” is available to retrieve a list of the unique
identifiers of the MaterialGroup objects that are associated with the
LEAPS object. If structure is a LEAPS Structure object that has been
retrieved from a Concept, a program can retrieve the list of unique
identifiers of the MaterialGroup objects associated with the structure with
the following code.

Lps::UniqueIdList uidList = structure->getUidsOfMaterialGroups ();

or a list of names and versions of the MaterialGroup objects with

Lps::NameVersionPairList nvList;
nvList = structure->getNameVersionPairsOfMaterialGroups ();

UniqueIdList is a type definition for a Standard Template Library (STL)
vector of strings. NameVersionPairList is a type definition for a STL
vector of pairs where a pair consists of a string and an unsigned integer.

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 User’s Guide

DRAFT 47 02 Apr 1999

Managing Properties for LEAPS Objects
Properties are represented by LEAPS Property objects and LEAPS
PropertyGroup objects. These objects are associated with the primary
LEAPS classes, the LEAPS Structure class, the LEAPS CommonView
class, and the LEAPS TopologicalView class. These classes manage
LEAPS Property and PropertyGroup objects that are associated with
them. These classes have member methods that provide various
functions that involve Property and PropertyGroup objects. These
member methods can:

• Create a Property or PropertyGroup object,
• Retrieve a Property or PropertyGroup object,
• Destroy a Property or PropertyGroup object,
• Determine the existence of a Property or PropertyGroup

object, and
• List Property and PropertyGroup objects that are managed by

the class.

Creating a Property for a LEAPS Object
If the LEAPS object has properties, a method with the name
“createProperty” is available to create a Property. If concept is a LEAPS
Concept object that has been retrieved from a Study, a program can
create a Property to be associated with concept with the following code.

// create the PropertyData that contains design waterline
Lps::PropertyDataPtr dwl = new Lps::RealScalar (25.5);

// create design waterline property for the concept
Lps::PropertyPtr dwlProp;
dwlProp = concept->createProperty ("DWL", 1, dwl);

Retrieving a Property for a LEAPS Object
If the LEAPS object has properties, a method with the name “getProperty”
is available to retrieve a Property. If concept is a LEAPS Concept object
that has been retrieved from a Study, a program can retrieve a Property
that has been associated with the concept with the following code.

Lps::PropertyPtr dwlProp;
dwlProp = concept->getProperty ("DWL", 1);

Destroying a Property for a LEAPS Object
If the LEAPS object has properties, a method with the name
“destroyProperty” is available to destroy a Property. If concept is a
LEAPS Concept object that has been retrieved from a Study, a program
can destroy a Property that has been associated with the concept with the
following code.

concept->destroyProperty ("DWL", 1);

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 User’s Guide

DRAFT 48 02 Apr 1999

Determining the Existence of a Property for a LEAPS
Object

If the LEAPS object has properties, a method with the name
“doesPropertyExists” is available to determine if a Property is associated
with the LEAPS object. If concept is a LEAPS Concept object that has
been retrieved from a Study, a program can determine if a Property is
associated with the concept with the following code.

If (concept->doesPropertyExist ("DWL", 1)
 std::cout << "Property Exists" << std::endl;
else
 std::cout << "Property does NOT Exist" << std::endl;

Listing the Properties Managed by a LEAPS Object
If the LEAPS object has properties, a method with the name
“getUidsOfProperties” is available to retrieve a list of the unique identifiers
of the Property objects that are associated with the LEAPS object. If
concept is a LEAPS Concept object that has been retrieved from a Study,
a program can retrieve the list of unique identifiers of the Property objects
associated with the concept with the following code.

Lps::UniqueIdList uidList = concept->getUidsOfProperties ();

or a list of names and versions of the Property objects with

Lps::NameVersionPairList nvList;
nvList = concept->getNameVersionPairsOfProperties ();

UniqueIdList is a type definition for a Standard Template Library (STL)
vector of strings. NameVersionPairList is a type definition for a STL
vector of pairs where a pair consists of a string and an unsigned integer.

Creating a PropertyGroup for a LEAPS Object
If the LEAPS object has properties, a method with the name
“createPropertyGroup” is available to create a PropertyGroup. If concept
is a LEAPS Concept object that has been retrieved from a Study, a
program can create a PropertyGroup to be associated with concept with
the following code.

// retrieve properties needed to create property group
Lps::PropertyPtrList propList;
propList.push_back (concept->getPropertyGroup ("aftPerpAtRdr", 1);
propList.push_back (concept->getPropertyGroup ("aftPerpAtDwl", 1);

// no PropertyGroups that are a part of this PropertyGroup –
// create empty STL vector of PropertyGroups
Lps::PropertyGroupPtrList propGroupList;

// create a property group for aft perpendicular view for
// the concept
Lps::PropertyGroupPtr aftPerp;
aftPerp = concept->createPropertyGroup ("AftPerp", 1,
 propList, propGroupList);

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 User’s Guide

DRAFT 49 02 Apr 1999

Retrieving a PropertyGroup for a LEAPS Object
If the LEAPS object has properties, a method with the name
“getPropertyGroup” is available to retrieve a PropertyGroup. If concept is
a LEAPS Concept object that has been retrieved from a Study, a program
can retrieve a PropertyGroup that has been associated with the concept
with the following code.

Lps::PropertyGroupPtr aftPerp;
aftPerp = concept->getPropertyGroup ("AftPerp", 1);

Destroying a PropertyGroup for a LEAPS Object
If the LEAPS object has properties, a method with the name
“destroyPropertyGroup” is available to destroy a PropertyGroup. If
concept is a LEAPS Concept object that has been retrieved from a Study,
a program can destroy a PropertyGroup that has been associated with
the concept with the following code.

concept->destroyPropertyGroup ("AftPerp", 1);

Determining the Existence of a PropertyGroup for a LEAPS
Object

If the LEAPS object has properties, a method with the name
“doesPropertyGroupExists” is available to determine if a PropertyGroup is
associated with the LEAPS object. If concept is a LEAPS Concept object
that has been retrieved from a Study, a program can determine if a
PropertyGroup is associated with the concept with the following code.

If (concept->doesPropertyGroupExist ("AftPerp", 1)
 std::cout << "PropertyGroup Exists" << std::endl;
else
 std::cout << "PropertyGroup does NOT Exist" << std::endl;

Listing the PropertyGroups Managed by a LEAPS Object
If the LEAPS object has properties, a method with the name
“getUidsOfPropertyGroups” is available to retrieve a list of the unique
identifiers of the PropertyGroup objects that are associated with the
LEAPS object. If concept is a LEAPS Concept object that has been
retrieved from a Study, a program can retrieve the list of unique identifiers
of the PropertyGroup objects associated with the concept with the
following code.

Lps::UniqueIdList uidList = concept->getUidsOfPropertyGroups ();

or a list of names and versions of the PropertyGroup objects with

Lps::NameVersionPairList nvList;
nvList = concept->getNameVersionPairsOfPropertyGroups ();

UniqueIdList is a type definition for a Standard Template Library (STL)
vector of strings. NameVersionPairList is a type definition for a STL
vector of pairs where a pair consists of a string and an unsigned integer.

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 User’s Guide

DRAFT 50 02 Apr 1999

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 User’s Guide

DRAFT 51 02 Apr 1999

DETERMINING THE CONTENTS OF LEAPS OBJECTS

 Determining the Contents of a LEAPS Database
A LEAPS Factory is created to manage a LEAPS database. At the
highest level, a LEAPS database is composed of Study objects and
Catalog objects. Currently methods associated with Catalog objects have
not been implemented. If ‘leapsDB’ is a Factory created to manage a
LEAPS database, the following code returns the number of Study objects
contained in the database, lists the unique identifiers of the objects, and
then retrieves them individually.

// find how many studies are in the LEAPS database
Lps::Uint32 studyCount;
studyCount = leapsDB->numberOfStudies ();
std::cout << "Number of Studies: " << studyCount << std::endl;

// get unique identifiers of the studies in the LEAPS database and
// print them
Lps::UniqueIdList uidList = leapsDB->getUidsOfStudies ();
Lps::UniqueIdList::iterator it;
for (it = uidList.begin () ; it != uidList.end () ; ++it)
 std::cout << "Study " << *it << std::endl;

// given the list of unique identifiers, retrieve studies
// individually and store in a STL vector of StudyPtr
Lps::StudyPtrList studies;
for (it = uidList.begin () ; it != uidList.end () ; ++it)
 studies.push_back (leapsDB->getStudy (*it));

Determining the Contents of a LEAPS Study Object
A LEAPS Study is composed of Concept objects, Scenario objects,
Property objects, and PropertyGroup objects. If ‘cvxStudy’ is a Study that
has been retrieved from a database, the contents of the Study object can
be queried and retrieved.

Determining the Concepts of a Study Object
The following code returns the number of Concept objects contained by
the Study object ‘cvxStudy’’, lists the unique identifiers of the Concept
objects, and then retrieves them individually.

// find how many concepts are in the Study object
Lps::Uint32 conceptCount;
conceptCount = cvxStudy->numberOfConcepts ();
std::cout << "Number of Concepts: " << conceptCount << std::endl;

// get unique identifiers of the concepts in the Study and
// print them
Lps::UniqueIdList uidList = cvxStudy->getUidsOfConcepts ();
Lps::UniqueIdList::iterator it;
for (it = uidList.begin () ; it != uidList.end () ; ++it)
 std::cout << "Concept " << *it << std::endl;

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 User’s Guide

DRAFT 52 02 Apr 1999

// given the list of unique identifiers, retrieve concepts
// individually and store in a STL vector of ConceptPtr
Lps::ConceptPtrList concepts;
for (it = uidList.begin () ; it != uidList.end () ; ++it)
 concepts.push_back (cvxStudy->getConcept (*it));

Determining the Scenarios of a Study Object
The following code returns the number of Scenario objects contained by
the Study object ‘cvxStudy’’, lists the unique identifiers of the Scenario
objects, and then retrieves them individually.

// find how many scenarios are in the Study object
Lps::Uint32 scenarioCount;
scenarioCount = cvxStudy->numberOfScenarios ();
std::cout << "Number of Scenarios: " << scenarioCount
 << std::endl;

// get unique identifiers of the scenarios in the Study and
// print them
Lps::UniqueIdList uidList = cvxStudy->getUidsOfScenarios ();
Lps::UniqueIdList::iterator it;
for (it = uidList.begin () ; it != uidList.end () ; ++it)
 std::cout << "Scenario " << *it << std::endl;

// given the list of unique identifiers, retrieve scenarios
// individually and store in a STL vector of ScenarioPtr
Lps::ScenarioPtrList scenarios;
for (it = uidList.begin () ; it != uidList.end () ; ++it)
 scenarios.push_back (cvxStudy->getScenario (*it));

Determining the Properties of a Study Object
The following code returns the number of Property objects contained by
the Study object ‘cvxStudy’’, lists the unique identifiers of the Property
objects, and then retrieves them individually.

// find how many propertys are in the Study object
Lps::Uint32 propertyCount;
propertyCount = cvxStudy->numberOfProperties ();
std::cout << "Number of Properties: " << propertyCount
 << std::endl;

// get unique identifiers of the properties in the Study and
// print them
Lps::UniqueIdList uidList = cvxStudy->getUidsOfProperties ();
Lps::UniqueIdList::iterator it;
for (it = uidList.begin () ; it != uidList.end () ; ++it)
 std::cout << "Property " << *it << std::endl;

// given the list of unique identifiers, retrieve properties
// individually and store in a STL vector of PropertyPtr
Lps::PropertyPtrList properties;
for (it = uidList.begin () ; it != uidList.end () ; ++it)
 properties.push_back (cvxStudy->getProperty (*it));

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 User’s Guide

DRAFT 53 02 Apr 1999

Determining the PropertyGroups of a Study Object
The following code returns the number of PropertyGroup objects
contained by the Study object ‘cvxStudy’’, lists the unique identifiers of the
PropertyGroup objects, and then retrieves them individually.

// find how many propertyGroups are in the Study object
Lps::Uint32 propertyGroupCount;
propertyGroupCount = cvxStudy->numberOfPropertyGroups ();
std::cout << "Number of PropertyGroups: " << propertyGroupCount
 << std::endl;

// get unique identifiers of the propertyGroups in the Study and
// print them
Lps::UniqueIdList uidList = cvxStudy->getUidsOfPropertyGroups ();
Lps::UniqueIdList::iterator it;
for (it = uidList.begin () ; it != uidList.end () ; ++it)
 std::cout << "PropertyGroup " << *it << std::endl;

// given the list of unique identifiers, retrieve propertyGroups
// individually and store in a STL vector of PropertyGroupPtr
Lps::PropertyGroupPtrList propertyGroups;
for (it = uidList.begin () ; it != uidList.end () ; ++it)
 propertyGroups.push_back (cvxStudy->getPropertyGroup (*it));

Determining the Contents of a LEAPS Concept Object
A LEAPS Concept is composed of Component objects, System objects,
Property objects, PropertyGroup objects, and a concept Structure object.
If ‘cvx’ is a Concept that has been retrieved from a Study, the contents of
the Concept object can be queried and retrieved.

Determining the Components of a Concept Object
The following code returns the number of Component objects contained
by the Concept object ‘cvx’’, lists the unique identifiers of the Component
objects, and then retrieves them individually.

// find how many components are in the Concept object
Lps::Uint32 componentCount;
componentCount = cvx->numberOfComponents ();
std::cout << "Number of Components: " << componentCount
 << std::endl;

// get unique identifiers of the components in the Concept and
// print them
Lps::UniqueIdList uidList = cvx->getUidsOfComponents ();
Lps::UniqueIdList::iterator it;
for (it = uidList.begin () ; it != uidList.end () ; ++it)
 std::cout << "Concept " << *it << std::endl;

// given the list of unique identifiers, retrieve components
// individually and store in a STL vector of ComponentPtr
Lps::ComponentPtrList components;
for (it = uidList.begin () ; it != uidList.end () ; ++it)
 components.push_back (cvx->getComponent (*it));

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 User’s Guide

DRAFT 54 02 Apr 1999

Determining the Systems of a Concept Object
The following code returns the number of System objects contained by
the Concept object ‘cvx’’, lists the unique identifiers of the System objects,
and then retrieves them individually.

// find how many systems are in the Concept object
Lps::Uint32 systemCount;
systemCount = cvx->numberOfSystems ();
std::cout << "Number of Systems: " << systemCount
 << std::endl;

// get unique identifiers of the systems in the Concept and
// print them
Lps::UniqueIdList uidList = cvx->getUidsOfSystems ();
Lps::UniqueIdList::iterator it;
for (it = uidList.begin () ; it != uidList.end () ; ++it)
 std::cout << "Concept " << *it << std::endl;

// given the list of unique identifiers, retrieve systems
// individually and store in a STL vector of SystemPtr
Lps::SystemPtrList systems;
for (it = uidList.begin () ; it != uidList.end () ; ++it)
 systems.push_back (cvx->getSystem (*it));

Determining the Properties of a Concept Object
The following code returns the number of Property objects contained by
the Concept object ‘cvx’, lists the unique identifiers of the Property
objects, and then retrieves them individually.

// find how many properties are in the Concept object
Lps::Uint32 propertyCount;
propertyCount = cvx->numberOfProperties ();
std::cout << "Number of Properties: " << propertyCount
 << std::endl;

// get unique identifiers of the properties in the Concept and
// print them
Lps::UniqueIdList uidList = cvx->getUidsOfProperties ();
Lps::UniqueIdList::iterator it;
for (it = uidList.begin () ; it != uidList.end () ; ++it)
 std::cout << "Property " << *it << std::endl;

// given the list of unique identifiers, retrieve properties
// individually and store in a STL vector of PropertyPtr
Lps::PropertyPtrList properties;
for (it = uidList.begin () ; it != uidList.end () ; ++it)
 properties.push_back (cvx->getProperty (*it));

Determining the PropertyGroups of a Concept Object
The following code returns the number of PropertyGroup objects
contained by the Concept object ‘cvx’, lists the unique identifiers of the
PropertyGroup objects, and then retrieves them individually.

// find how many propertyGroups are in the Concept object
Lps::Uint32 propertyGroupCount;
propertyGroupCount = cvx->numberOfPropertyGroups ();
std::cout << "Number of PropertyGroups: " << propertyGroupCount

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 User’s Guide

DRAFT 55 02 Apr 1999

 << std::endl;

// get unique identifiers of the propertyGroups in the Concept and
// print them
Lps::UniqueIdList uidList = cvx->getUidsOfPropertyGroups ();
Lps::UniqueIdList::iterator it;
for (it = uidList.begin () ; it != uidList.end () ; ++it)
 std::cout << "PropertyGroup " << *it << std::endl;

// given the list of unique identifiers, retrieve propertyGroups
// individually and store in a STL vector of PropertyGroupPtr
Lps::PropertyGroupPtrList propertyGroups;
for (it = uidList.begin () ; it != uidList.end () ; ++it)
 propertyGroups.push_back (cvx->getPropertyGroup (*it));

Retrieving a Concept’s Structure
The following code retrieves the concept’s structure from the Concept
object ‘cvx’ that has been retrieved from a Study.

Lps::StructurePtr cvxStructure;
cvxStructure = cvx->getConceptStructure ();

Determining the Contents of a LEAPS Component
Object

A LEAPS Component is composed of Property objects, PropertyGroup
objects, and a component Structure object. If ‘pump’ is a Component
that has been retrieved from a Concept, the contents of the Component
object can be queried and retrieved.

Determining the Properties of a Component Object
The following code returns the number of Property objects contained by
the Component object ‘pump’, lists the unique identifiers of the Property
objects, and then retrieves them individually.

// find how many properties are in the Component object
Lps::Uint32 propertyCount;
propertyCount = pump->numberOfProperties ();
std::cout << "Number of Properties: " << propertyCount
 << std::endl;

// get unique identifiers of the properties in the Component and
// print them
Lps::UniqueIdList uidList = pump->getUidsOfProperties ();
Lps::UniqueIdList::iterator it;
for (it = uidList.begin () ; it != uidList.end () ; ++it)
 std::cout << "Property " << *it << std::endl;

// given the list of unique identifiers, retrieve properties
// individually and store in a STL vector of PropertyPtr
Lps::PropertyPtrList properties;
for (it = uidList.begin () ; it != uidList.end () ; ++it)
 properties.push_back (pump->getProperty (*it));

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 User’s Guide

DRAFT 56 02 Apr 1999

Determining the PropertyGroups of a Component Object
The following code returns the number of PropertyGroup objects
contained by the Component object ‘pump’, lists the unique identifiers of
the PropertyGroup objects, and then retrieves them individually.

// find how many propertyGroups are in the Component object
Lps::Uint32 propertyGroupCount;
propertyGroupCount = pump->numberOfPropertyGroups ();
std::cout << "Number of PropertyGroups: " << propertyGroupCount
 << std::endl;

// get unique identifiers of the propertyGroups in the
// Component and print them
Lps::UniqueIdList uidList = pump->getUidsOfPropertyGroups ();
Lps::UniqueIdList::iterator it;
for (it = uidList.begin () ; it != uidList.end () ; ++it)
 std::cout << "PropertyGroup " << *it << std::endl;

// given the list of unique identifiers, retrieve propertyGroups
// individually and store in a STL vector of PropertyGroupPtr
Lps::PropertyGroupPtrList propertyGroups;
for (it = uidList.begin () ; it != uidList.end () ; ++it)
 propertyGroups.push_back (pump->getPropertyGroup (*it));

Retrieving a Component’s Structure
The following code retrieves the component’s structure from the
Component object ‘pump’ that has been retrieved from a Concept.

Lps::StructurePtr pumpStructure;
pumpStructure = pump->getComponentStructure ();

Determining the Contents of a LEAPS System Object
A LEAPS System is composed of Property objects, PropertyGroup
objects, Diagram objects, and an aggregate Component object. The
aggregate component is a Component object that represents the System
as a component. Currently, the methods to access Diagram objects and
the aggregate Component object is not implemented. If ‘fireMain’ is a
System that has been retrieved from a Concept, the contents of the
System object can be queried and retrieved.

Determining the Properties of a System Object
The following code returns the number of Property objects contained by
the System object ‘fireMain’, lists the unique identifiers of the Property
objects, and then retrieves them individually.

// find how many properties are in the System object
Lps::Uint32 propertyCount;
propertyCount = fireMain->numberOfProperties ();
std::cout << "Number of Properties: " << propertyCount
 << std::endl;

// get unique identifiers of the properties in the System and
// print them
Lps::UniqueIdList uidList = fireMain->getUidsOfProperties ();

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 User’s Guide

DRAFT 57 02 Apr 1999

Lps::UniqueIdList::iterator it;
for (it = uidList.begin () ; it != uidList.end () ; ++it)
 std::cout << "Property " << *it << std::endl;

// given the list of unique identifiers, retrieve properties
// individually and store in a STL vector of PropertyPtr
Lps::PropertyPtrList properties;
for (it = uidList.begin () ; it != uidList.end () ; ++it)
 properties.push_back (fireMain->getProperty (*it));

Determining the PropertyGroups of a System Object
The following code returns the number of PropertyGroup objects
contained by the System object ‘fireMain’, lists the unique identifiers of
the PropertyGroup objects, and then retrieves them individually.

// find how many propertyGroups are in the System object
Lps::Uint32 propertyGroupCount;
propertyGroupCount = fireMain->numberOfPropertyGroups ();
std::cout << "Number of PropertyGroups: " << propertyGroupCount
 << std::endl;

// get unique identifiers of the propertyGroups in the
// System and print them
Lps::UniqueIdList uidList = fireMain->getUidsOfPropertyGroups ();
Lps::UniqueIdList::iterator it;
for (it = uidList.begin () ; it != uidList.end () ; ++it)
 std::cout << "PropertyGroup " << *it << std::endl;

// given the list of unique identifiers, retrieve propertyGroups
// individually and store in a STL vector of PropertyGroupPtr
Lps::PropertyGroupPtrList propertyGroups;
for (it = uidList.begin () ; it != uidList.end () ; ++it)
 propertyGroups.push_back (fireMain->getPropertyGroup (*it));

Determining the Contents of a LEAPS Scenario Object
A LEAPS Scenario is currently composed of Property objects and
PropertyGroup objects. The LEAPS Scenario class will be expanded in
the future. If ‘planA’ is a Scenario that has been retrieved from a Study,
the contents of the Scenario object can be queried and retrieved.

Determining the Properties of a Scenario Object
The following code returns the number of Property objects contained by
the Scenario object ‘planA’, lists the unique identifiers of the Property
objects, and then retrieves them individually.

// find how many properties are in the Scenario object
Lps::Uint32 propertyCount;
propertyCount = planA->numberOfProperties ();
std::cout << "Number of Properties: " << propertyCount
 << std::endl;

// get unique identifiers of the properties in the Scenario and
// print them
Lps::UniqueIdList uidList = planA->getUidsOfProperties ();
Lps::UniqueIdList::iterator it;
for (it = uidList.begin () ; it != uidList.end () ; ++it)
 std::cout << "Property " << *it << std::endl;

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 User’s Guide

DRAFT 58 02 Apr 1999

// given the list of unique identifiers, retrieve properties
// individually and store in a STL vector of PropertyPtr
Lps::PropertyPtrList properties;
for (it = uidList.begin () ; it != uidList.end () ; ++it)
 properties.push_back (planA->getProperty (*it));

Determining the PropertyGroups of a Scenario Object
The following code returns the number of PropertyGroup objects
contained by the Scenario object ‘planA’, lists the unique identifiers of the
PropertyGroup objects, and then retrieves them individually.

// find how many propertyGroups are in the Scenario object
Lps::Uint32 propertyGroupCount;
propertyGroupCount = planA->numberOfPropertyGroups ();
std::cout << "Number of PropertyGroups: " << propertyGroupCount
 << std::endl;

// get unique identifiers of the propertyGroups in the
// Scenario and print them
Lps::UniqueIdList uidList = planA->getUidsOfPropertyGroups ();
Lps::UniqueIdList::iterator it;
for (it = uidList.begin () ; it != uidList.end () ; ++it)
 std::cout << "PropertyGroup " << *it << std::endl;

// given the list of unique identifiers, retrieve propertyGroups
// individually and store in a STL vector of PropertyGroupPtr
Lps::PropertyGroupPtrList propertyGroups;
for (it = uidList.begin () ; it != uidList.end () ; ++it)
 propertyGroups.push_back (planA->getPropertyGroup (*it));

Determining the Contents of a LEAPS Structure Object
A LEAPS Structure is composed or has the following LEAPS objects:

• Property objects,
• PropertyGroup objects,
• Material objects,
• MaterialGroup objects,
• CommonView objects,
• TopologicalView objects,
• Solid objects,
• OrientedClosedShell objects,
• Face objects,
• EdgeLoop objects,
• CoEdge objects,
• Edge objects,
• CoPoint objects,
• Ppoint objects,
• Pcurve objects, and
• Surface objects.

A Structure object represents the geometry and the views of the geometry
of either a Concept or a Component. If ‘geom’ is a Structure object that

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 User’s Guide

DRAFT 59 02 Apr 1999

was retrieved from a Concept or Component object, the contents of the
Structure object can be queried and retrieved.

Determining the Properties of a Structure Object
The following code returns the number of Property objects contained by
the Structure object ‘geom’, lists the unique identifiers of the Property
objects, and then retrieves them individually.

// find how many properties are in the Structure object
Lps::Uint32 propertyCount;
propertyCount = geom->numberOfProperties ();
std::cout << "Number of Properties: " << propertyCount
 << std::endl;

// get unique identifiers of the properties in the Structure and
// print them
Lps::UniqueIdList uidList = geom->getUidsOfProperties ();
Lps::UniqueIdList::iterator it;
for (it = uidList.begin () ; it != uidList.end () ; ++it)
 std::cout << "Property " << *it << std::endl;

// given the list of unique identifiers, retrieve properties
// individually and store in a STL vector of PropertyPtr
Lps::PropertyPtrList properties;
for (it = uidList.begin () ; it != uidList.end () ; ++it)
 properties.push_back (geom->getProperty (*it));

Determining the PropertyGroups of a Structure Object
The following code returns the number of PropertyGroup objects
contained by the Structure object ‘geom’, lists the unique identifiers of the
PropertyGroup objects, and then retrieves them individually.

// find how many propertyGroups are in the Structure object
Lps::Uint32 propertyGroupCount;
propertyGroupCount = geom->numberOfPropertyGroups ();
std::cout << "Number of PropertyGroups: " << propertyGroupCount
 << std::endl;

// get unique identifiers of the propertyGroups in the
// Structure and print them
Lps::UniqueIdList uidList = geom->getUidsOfPropertyGroups ();
Lps::UniqueIdList::iterator it;
for (it = uidList.begin () ; it != uidList.end () ; ++it)
 std::cout << "PropertyGroup " << *it << std::endl;

// given the list of unique identifiers, retrieve propertyGroups
// individually and store in a STL vector of PropertyGroupPtr
Lps::PropertyGroupPtrList propertyGroups;
for (it = uidList.begin () ; it != uidList.end () ; ++it)
 propertyGroups.push_back (geom->getPropertyGroup (*it));

Determining the Materials of a Structure Object
The following code returns the number of Material objects contained by
the Structure object ‘geom’, lists the unique identifiers of the Material
objects, and then retrieves them individually.

// find how many materials are in the Structure object

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 User’s Guide

DRAFT 60 02 Apr 1999

Lps::Uint32 materialCount;
materialCount = geom->numberOfMaterials ();
std::cout << "Number of Materials: " << materialCount
 << std::endl;

// get unique identifiers of the materials in the Structure and
// print them
Lps::UniqueIdList uidList = geom->getUidsOfMaterials ();
Lps::UniqueIdList::iterator it;
for (it = uidList.begin () ; it != uidList.end () ; ++it)
 std::cout << "Material " << *it << std::endl;

// given the list of unique identifiers, retrieve materials
// individually and store in a STL vector of MaterialPtr
Lps::MaterialPtrList materials;
for (it = uidList.begin () ; it != uidList.end () ; ++it)
 materials.push_back (geom->getMaterial (*it));

Determining the MaterialGroups of a Structure Object
The following code returns the number of MaterialGroup objects
contained by the Structure object ‘geom’, lists the unique identifiers of the
MaterialGroup objects, and then retrieves them individually.

// find how many materialGroups are in the Structure object
Lps::Uint32 materialGroupCount;
materialGroupCount = geom->numberOfMaterialGroups ();
std::cout << "Number of MaterialGroups: " << materialGroupCount
 << std::endl;

// get unique identifiers of the materialGroups in the
// Structure and print them
Lps::UniqueIdList uidList = geom->getUidsOfMaterialGroups ();
Lps::UniqueIdList::iterator it;
for (it = uidList.begin () ; it != uidList.end () ; ++it)
 std::cout << "MaterialGroup " << *it << std::endl;

// given the list of unique identifiers, retrieve materialGroups
// individually and store in a STL vector of MaterialGroupPtr
Lps::MaterialGroupPtrList materialGroups;
for (it = uidList.begin () ; it != uidList.end () ; ++it)
 materialGroups.push_back (geom->getMaterialGroup (*it));

Determining the CommonViews of a Structure Object
The following code returns the number of CommonView objects
contained by the Structure object ‘geom’, lists the unique identifiers of the
CommonView objects, and then retrieves them individually.

// find how many commonViews are in the Structure object
Lps::Uint32 commonViewCount;
commonViewCount = geom->numberOfCommonViews ();
std::cout << "Number of CommonViews: " << commonViewCount
 << std::endl;

// get unique identifiers of the commonViews in the
// Structure and print them
Lps::UniqueIdList uidList = geom->getUidsOfCommonViews ();
Lps::UniqueIdList::iterator it;
for (it = uidList.begin () ; it != uidList.end () ; ++it)
 std::cout << "CommonView " << *it << std::endl;

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 User’s Guide

DRAFT 61 02 Apr 1999

// given the list of unique identifiers, retrieve commonViews
// individually and store in a STL vector of CommonViewPtr
Lps::CommonViewPtrList commonViews;
for (it = uidList.begin () ; it != uidList.end () ; ++it)
 commonViews.push_back (geom->getCommonView (*it));

Determining the TopologicalViews of a Structure Object
The following code returns the number of TopologicalView objects
contained by the Structure object ‘geom’, lists the unique identifiers of the
TopologicalView objects, and then retrieves them individually.

// find how many topologicalViews are in the Structure object
Lps::Uint32 topologicalViewCount;
topologicalViewCount = geom->numberOfTopologicalViews ();
std::cout << "Number of TopologicalViews: "
 << topologicalViewCount << std::endl;

// get unique identifiers of the topologicalViews in the
// Structure and print them
Lps::UniqueIdList uidList = geom->getUidsOfTopologicalViews ();
Lps::UniqueIdList::iterator it;
for (it = uidList.begin () ; it != uidList.end () ; ++it)
 std::cout << "TopologicalView " << *it << std::endl;

// given the list of unique identifiers, retrieve topologicalViews
// individually and store in a STL vector of TopologicalViewPtr
Lps::TopologicalViewPtrList topologicalViews;
for (it = uidList.begin () ; it != uidList.end () ; ++it)
 topologicalViews.push_back (geom->getTopologicalView (*it));

Determining the Solids of a Structure Object
The following code returns the number of Solid objects contained by the
Structure object ‘geom’, lists the unique identifiers of the Solid objects,
and then retrieves them individually.

// find how many solids are in the Structure object
Lps::Uint32 solidCount;
solidCount = geom->numberOfSolids ();
std::cout << "Number of Solids: " << solidCount
 << std::endl;

// get unique identifiers of the solids in the
// Structure and print them
Lps::UniqueIdList uidList = geom->getUidsOfSolids ();
Lps::UniqueIdList::iterator it;
for (it = uidList.begin () ; it != uidList.end () ; ++it)
 std::cout << "Solid " << *it << std::endl;

// given the list of unique identifiers, retrieve solids
// individually and store in a STL vector of SolidPtr
Lps::SolidPtrList solids;
for (it = uidList.begin () ; it != uidList.end () ; ++it)
 solids.push_back (geom->getSolid (*it));

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 User’s Guide

DRAFT 62 02 Apr 1999

Determining the OrientedClosedShells of a Structure
Object

The following code returns the number of OrientedClosedShell objects
contained by the Structure object ‘geom’, lists the unique identifiers of the
OrientedClosedShell objects, and then retrieves them individually.

// find how many orientedClosedShells are in the Structure object
Lps::Uint32 orientedClosedShellCount;
orientedClosedShellCount = geom->numberOfOrientedClosedShells ();
std::cout << "Number of OrientedClosedShells: "
 << orientedClosedShellCount << std::endl;

// get unique identifiers of the orientedClosedShells in the
// Structure and print them
Lps::UniqueIdList uidList = geom->getUidsOfOrientedClosedShells
();
Lps::UniqueIdList::iterator it;
for (it = uidList.begin () ; it != uidList.end () ; ++it)
 std::cout << "OrientedClosedShell " << *it << std::endl;

// given the list of unique identifiers, retrieve
orientedClosedShells
// individually and store in a STL vector of
OrientedClosedShellPtr
Lps::OrientedClosedShellPtrList orientedClosedShells;
for (it = uidList.begin () ; it != uidList.end () ; ++it)
{
 orientedClosedShells.push_back
 (geom->getOrientedClosedShell (*it));
}

Determining the Faces of a Structure Object
The following code returns the number of Face objects contained by the
Structure object ‘geom’, lists the unique identifiers of the Face objects,
and then retrieves them individually.

// find how many faces are in the Structure object
Lps::Uint32 faceCount;
faceCount = geom->numberOfFaces ();
std::cout << "Number of Faces: " << faceCount
 << std::endl;

// get unique identifiers of the faces in the
// Structure and print them
Lps::UniqueIdList uidList = geom->getUidsOfFaces ();
Lps::UniqueIdList::iterator it;
for (it = uidList.begin () ; it != uidList.end () ; ++it)
 std::cout << "Face " << *it << std::endl;

// given the list of unique identifiers, retrieve faces
// individually and store in a STL vector of FacePtr
Lps::FacePtrList faces;
for (it = uidList.begin () ; it != uidList.end () ; ++it)
 faces.push_back (geom->getFace (*it));

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 User’s Guide

DRAFT 63 02 Apr 1999

Determining the EdgeLoops of a Structure Object
The following code returns the number of EdgeLoop objects contained by
the Structure object ‘geom’, lists the unique identifiers of the EdgeLoop
objects, and then retrieves them individually.

// find how many edgeLoops are in the Structure object
Lps::Uint32 edgeLoopCount;
edgeLoopCount = geom->numberOfEdgeLoops ();
std::cout << "Number of EdgeLoops: " << edgeLoopCount
 << std::endl;

// get unique identifiers of the edgeLoops in the
// Structure and print them
Lps::UniqueIdList uidList = geom->getUidsOfEdgeLoops ();
Lps::UniqueIdList::iterator it;
for (it = uidList.begin () ; it != uidList.end () ; ++it)
 std::cout << "EdgeLoop " << *it << std::endl;

// given the list of unique identifiers, retrieve edgeLoops
// individually and store in a STL vector of EdgeLoopPtr
Lps::EdgeLoopPtrList edgeLoops;
for (it = uidList.begin () ; it != uidList.end () ; ++it)
 edgeLoops.push_back (geom->getEdgeLoop (*it));

Determining the CoEdges of a Structure Object
The following code returns the number of CoEdge objects contained by
the Structure object ‘geom’, lists the unique identifiers of the CoEdge
objects, and then retrieves them individually.

// find how many coEdges are in the Structure object
Lps::Uint32 coEdgeCount;
coEdgeCount = geom->numberOfCoEdges ();
std::cout << "Number of CoEdges: " << coEdgeCount
 << std::endl;

// get unique identifiers of the coEdges in the
// Structure and print them
Lps::UniqueIdList uidList = geom->getUidsOfCoEdges ();
Lps::UniqueIdList::iterator it;
for (it = uidList.begin () ; it != uidList.end () ; ++it)
 std::cout << "CoEdge " << *it << std::endl;

// given the list of unique identifiers, retrieve coEdges
// individually and store in a STL vector of CoEdgePtr
Lps::CoEdgePtrList coEdges;
for (it = uidList.begin () ; it != uidList.end () ; ++it)
 coEdges.push_back (geom->getCoEdge (*it));

Determining the Edges of a Structure Object
The following code returns the number of Edge objects contained by the
Structure object ‘geom’, lists the unique identifiers of the Edge objects,
and then retrieves them individually.

// find how many edges are in the Structure object
Lps::Uint32 edgeCount;
edgeCount = geom->numberOfEdges ();
std::cout << "Number of Edges: " << edgeCount

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 User’s Guide

DRAFT 64 02 Apr 1999

 << std::endl;

// get unique identifiers of the edges in the
// Structure and print them
Lps::UniqueIdList uidList = geom->getUidsOfEdges ();
Lps::UniqueIdList::iterator it;
for (it = uidList.begin () ; it != uidList.end () ; ++it)
 std::cout << "Edge " << *it << std::endl;

// given the list of unique identifiers, retrieve edges
// individually and store in a STL vector of EdgePtr
Lps::EdgePtrList edges;
for (it = uidList.begin () ; it != uidList.end () ; ++it)
 edges.push_back (geom->getEdge (*it));

Determining the CoPoints of a Structure Object
The following code returns the number of CoPoint objects contained by
the Structure object ‘geom’, lists the unique identifiers of the CoPoint
objects, and then retrieves them individually.

// find how many coPoints are in the Structure object
Lps::Uint32 coPointCount;
coPointCount = geom->numberOfCoPoints ();
std::cout << "Number of CoPoints: " << coPointCount
 << std::endl;

// get unique identifiers of the coPoints in the
// Structure and print them
Lps::UniqueIdList uidList = geom->getUidsOfCoPoints ();
Lps::UniqueIdList::iterator it;
for (it = uidList.begin () ; it != uidList.end () ; ++it)
 std::cout << "CoPoint " << *it << std::endl;

// given the list of unique identifiers, retrieve coPoints
// individually and store in a STL vector of CoPointPtr
Lps::CoPointPtrList coPoints;
for (it = uidList.begin () ; it != uidList.end () ; ++it)
 coPoints.push_back (geom->getCoPoint (*it));

Determining the Ppoints of a Structure Object
The following code returns the number of Ppoint objects contained by the
Structure object ‘geom’, lists the unique identifiers of the Ppoint objects,
and then retrieves them individually.

// find how many ppoints are in the Structure object
Lps::Uint32 ppointCount;
ppointCount = geom->numberOfPpoints ();
std::cout << "Number of Ppoints: " << ppointCount
 << std::endl;

// get unique identifiers of the ppoints in the
// Structure and print them
Lps::UniqueIdList uidList = geom->getUidsOfPpoints ();
Lps::UniqueIdList::iterator it;
for (it = uidList.begin () ; it != uidList.end () ; ++it)
 std::cout << "Ppoint " << *it << std::endl;

// given the list of unique identifiers, retrieve ppoints
// individually and store in a STL vector of PpointPtr

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 User’s Guide

DRAFT 65 02 Apr 1999

Lps::PpointPtrList ppoints;
for (it = uidList.begin () ; it != uidList.end () ; ++it)
 ppoints.push_back (geom->getPpoint (*it));

Determining the Pcurves of a Structure Object
The following code returns the number of Pcurve objects contained by the
Structure object ‘geom’, lists the unique identifiers of the Pcurve objects,
and then retrieves them individually.

// find how many pcurves are in the Structure object
Lps::Uint32 pcurveCount;
pcurveCount = geom->numberOfPcurves ();
std::cout << "Number of Pcurves: " << pcurveCount
 << std::endl;

// get unique identifiers of the pcurves in the
// Structure and print them
Lps::UniqueIdList uidList = geom->getUidsOfPcurves ();
Lps::UniqueIdList::iterator it;
for (it = uidList.begin () ; it != uidList.end () ; ++it)
 std::cout << "Pcurve " << *it << std::endl;

// given the list of unique identifiers, retrieve pcurves
// individually and store in a STL vector of PcurvePtr
Lps::PcurvePtrList pcurves;
for (it = uidList.begin () ; it != uidList.end () ; ++it)
 pcurves.push_back (geom->getPcurve (*it));

Determining the Surfaces of a Structure Object
The following code returns the number of Surface objects contained by
the Structure object ‘geom’, lists the unique identifiers of the Surface
objects, and then retrieves them individually.

// find how many surfaces are in the Structure object
Lps::Uint32 surfaceCount;
surfaceCount = geom->numberOfSurfaces ();
std::cout << "Number of Surfaces: " << surfaceCount
 << std::endl;

// get unique identifiers of the surfaces in the
// Structure and print them
Lps::UniqueIdList uidList = geom->getUidsOfSurfaces ();
Lps::UniqueIdList::iterator it;
for (it = uidList.begin () ; it != uidList.end () ; ++it)
 std::cout << "Surface " << *it << std::endl;

// given the list of unique identifiers, retrieve surfaces
// individually and store in a STL vector of SurfacePtr
Lps::SurfacePtrList surfaces;
for (it = uidList.begin () ; it != uidList.end () ; ++it)
 surfaces.push_back (geom->getSurface (*it));

Determining the Contents of a LEAPS CommonView
Object

A LEAPS CommonView is currently composed of CommonView objects
and TopologicalView objects. It also has of Property objects,

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 User’s Guide

DRAFT 66 02 Apr 1999

PropertyGroup objects, Material objects, and MaterialGroup objects. If
‘commonView’ is a CommonView that has been retrieved from a
Structure, the contents of the CommonView object can be queried and
retrieved.

Determining the Properties of a CommonView Object
The following code returns the number of Property objects contained by
the CommonView object ‘commonView’, lists the unique identifiers of the
Property objects, and then retrieves them individually.

// find how many properties are in the CommonView object
Lps::Uint32 propertyCount;
propertyCount = commonView->numberOfProperties ();
std::cout << "Number of Properties: " << propertyCount
 << std::endl;

// get unique identifiers of the properties in the CommonView and
// print them
Lps::UniqueIdList uidList = commonView->getUidsOfProperties ();
Lps::UniqueIdList::iterator it;
for (it = uidList.begin () ; it != uidList.end () ; ++it)
 std::cout << "Property " << *it << std::endl;

// given the list of unique identifiers, retrieve properties
// individually and store in a STL vector of PropertyPtr
Lps::PropertyPtrList properties;
for (it = uidList.begin () ; it != uidList.end () ; ++it)
 properties.push_back (commonView->getProperty (*it));

Determining the PropertyGroups of a CommonView Object
The following code returns the number of PropertyGroup objects
contained by the CommonView object ‘commonView’, lists the unique
identifiers of the PropertyGroup objects, and then retrieves them
individually.

// find how many propertyGroups are in the CommonView object
Lps::Uint32 propertyGroupCount;
propertyGroupCount = commonView->numberOfPropertyGroups ();
std::cout << "Number of PropertyGroups: " << propertyGroupCount
 << std::endl;

// get unique identifiers of the propertyGroups in the
// CommonView and print them
Lps::UniqueIdList uidList = commonView->getUidsOfPropertyGroups
();
Lps::UniqueIdList::iterator it;
for (it = uidList.begin () ; it != uidList.end () ; ++it)
 std::cout << "PropertyGroup " << *it << std::endl;

// given the list of unique identifiers, retrieve propertyGroups
// individually and store in a STL vector of PropertyGroupPtr
Lps::PropertyGroupPtrList propertyGroups;
for (it = uidList.begin () ; it != uidList.end () ; ++it)
 propertyGroups.push_back (commonView->getPropertyGroup (*it));

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 User’s Guide

DRAFT 67 02 Apr 1999

Determining the Materials of a CommonView Object
The following code returns the number of Material objects contained by
the CommonView object ‘commonView’, lists the unique identifiers of the
Material objects, and then retrieves them individually.

// find how many materials are in the CommonView object
Lps::Uint32 materialCount;
materialCount = commonView->numberOfMaterials ();
std::cout << "Number of Materials: " << materialCount
 << std::endl;

// get unique identifiers of the materials in the CommonView and
// print them
Lps::UniqueIdList uidList = commonView->getUidsOfMaterials ();
Lps::UniqueIdList::iterator it;
for (it = uidList.begin () ; it != uidList.end () ; ++it)
 std::cout << "Material " << *it << std::endl;

// given the list of unique identifiers, retrieve materials
// individually and store in a STL vector of MaterialPtr
Lps::MaterialPtrList materials;
for (it = uidList.begin () ; it != uidList.end () ; ++it)
 materials.push_back (commonView->getMaterial (*it));

Determining the MaterialGroups of a CommonView Object
The following code returns the number of MaterialGroup objects
contained by the CommonView object ‘commonView’, lists the unique
identifiers of the MaterialGroup objects, and then retrieves them
individually.

// find how many materialGroups are in the CommonView object
Lps::Uint32 materialGroupCount;
materialGroupCount = commonView->numberOfMaterialGroups ();
std::cout << "Number of MaterialGroups: " << materialGroupCount
 << std::endl;

// get unique identifiers of the materialGroups in the
// CommonView and print them
Lps::UniqueIdList uidList = commonView->getUidsOfMaterialGroups
();
Lps::UniqueIdList::iterator it;
for (it = uidList.begin () ; it != uidList.end () ; ++it)
 std::cout << "MaterialGroup " << *it << std::endl;

// given the list of unique identifiers, retrieve materialGroups
// individually and store in a STL vector of MaterialGroupPtr
Lps::MaterialGroupPtrList materialGroups;
for (it = uidList.begin () ; it != uidList.end () ; ++it)
 materialGroups.push_back (commonView->getMaterialGroup (*it));

Determining the CommonViews of a CommonView Object
The following code returns the number of CommonView objects
contained by the CommonView object ‘commonView’, lists the unique
identifiers of the CommonView objects, and then retrieves them
individually.

// find how many commonViews are in the CommonView object

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 User’s Guide

DRAFT 68 02 Apr 1999

Lps::Uint32 commonViewCount;
commonViewCount = commonView->numberOfCommonViews ();
std::cout << "Number of CommonViews: " << commonViewCount
 << std::endl;

// get unique identifiers of the commonViews in the
// CommonView and print them
Lps::UniqueIdList uidList = commonView->getUidsOfCommonViews ();
Lps::UniqueIdList::iterator it;
for (it = uidList.begin () ; it != uidList.end () ; ++it)
 std::cout << "CommonView " << *it << std::endl;

// given the list of unique identifiers, retrieve commonViews
// individually and store in a STL vector of CommonViewPtr
Lps::CommonViewPtrList commonViews;
for (it = uidList.begin () ; it != uidList.end () ; ++it)
 commonViews.push_back (commonView->getCommonView (*it));

Determining the TopologicalViews of a CommonView
Object

The following code returns the number of TopologicalView objects
contained by the CommonView object ‘commonView’, lists the unique
identifiers of the TopologicalView objects, and then retrieves them
individually.

// find how many topologicalViews are in the CommonView object
Lps::Uint32 topologicalViewCount;
topologicalViewCount = commonView->numberOfTopologicalViews ();
std::cout << "Number of TopologicalViews: "
 << topologicalViewCount << std::endl;

// get unique identifiers of the topologicalViews in the
// CommonView and print them
Lps::UniqueIdList uidList = commonView->getUidsOfTopologicalViews
();
Lps::UniqueIdList::iterator it;
for (it = uidList.begin () ; it != uidList.end () ; ++it)
 std::cout << "TopologicalView " << *it << std::endl;

// given the list of unique identifiers, retrieve topologicalViews
// individually and store in a STL vector of TopologicalViewPtr
Lps::TopologicalViewPtrList topologicalViews;
for (it = uidList.begin () ; it != uidList.end () ; ++it)
{
 topologicalViews.push_back
 (commonView->getTopologicalView (*it));
}

Determining the CommonViews that Use the CommonView
Object

The following code returns the number of CommonView objects that are
used by the CommonView object ‘commonView’, lists the unique
identifiers of these CommonView objects, and then retrieves them
individually.

// find how many CommonViews that use the CommonView object
Lps::Uint32 viewCount;

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 User’s Guide

DRAFT 69 02 Apr 1999

viewCount = commonView->numberOfCommonViewsUsingCommonView ();
std::cout << "Number of CommonViews: " << viewCount
 << std::endl;

// get unique identifiers of the propertyGroups in the
// CommonView and print them
Lps::UniqueIdList uidList;
uidList = commonView->getUidsOfCommonViewsUsingCommonView ();
Lps::UniqueIdList::iterator it;
for (it = uidList.begin () ; it != uidList.end () ; ++it)
 std::cout << "CommonView " << *it << std::endl;

// given the list of unique identifiers, retrieve CommonViews
// individually and store in a STL vector of CommonViewPtr
Lps::CommonViewPtrList views;
for (it = uidList.begin () ; it != uidList.end () ; ++it)
{
 views.push_back
 (commonView->getCommonViewUsingCommonView (*it));
}

Determining the Contents of a LEAPS TopologicalView
Object

A LEAPS TopologicalView is currently a Solid, Face or Solid that has
Property objects, PropertyGroup objects, Material objects, and
MaterialGroup objects. If ‘topologicalView’ is a TopologicalView that has
been retrieved from a Structure, the contents of the TopologicalView
object can be queried and retrieved.

Determining the Properties of a TopologicalView Object
The following code returns the number of Property objects contained by
the TopologicalView object ‘topologicalView’, lists the unique identifiers of
the Property objects, and then retrieves them individually.

// find how many properties are in the TopologicalView object
Lps::Uint32 propertyCount;
propertyCount = topologicalView->numberOfProperties ();
std::cout << "Number of Properties: " << propertyCount
 << std::endl;

// get unique identifiers of the properties in the
// TopologicalView and print them
Lps::UniqueIdList uidList;
uidList = topologicalView->getUidsOfProperties ();
Lps::UniqueIdList::iterator it;
for (it = uidList.begin () ; it != uidList.end () ; ++it)
 std::cout << "Property " << *it << std::endl;

// given the list of unique identifiers, retrieve properties
// individually and store in a STL vector of PropertyPtr
Lps::PropertyPtrList properties;
for (it = uidList.begin () ; it != uidList.end () ; ++it)
 properties.push_back (topologicalView->getProperty (*it));

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 User’s Guide

DRAFT 70 02 Apr 1999

Determining the PropertyGroups of a TopologicalView
Object

The following code returns the number of PropertyGroup objects
contained by the TopologicalView object ‘topologicalView’, lists the
unique identifiers of the PropertyGroup objects, and then retrieves them
individually.

// find how many propertyGroups are in the TopologicalView object
Lps::Uint32 propertyGroupCount;
propertyGroupCount = topologicalView->numberOfPropertyGroups ();
std::cout << "Number of PropertyGroups: " << propertyGroupCount
 << std::endl;

// get unique identifiers of the propertyGroups in the
// TopologicalView and print them
Lps::UniqueIdList uidList = topologicalView-
>getUidsOfPropertyGroups ();
Lps::UniqueIdList::iterator it;
for (it = uidList.begin () ; it != uidList.end () ; ++it)
 std::cout << "PropertyGroup " << *it << std::endl;

// given the list of unique identifiers, retrieve propertyGroups
// individually and store in a STL vector of PropertyGroupPtr
Lps::PropertyGroupPtrList propertyGroups;
for (it = uidList.begin () ; it != uidList.end () ; ++it)
{
 propertyGroups.push_back
 (topologicalView->getPropertyGroup (*it));
}

Determining the Materials of a TopologicalView Object
The following code returns the number of Material objects contained by
the TopologicalView object ‘topologicalView’, lists the unique identifiers of
the Material objects, and then retrieves them individually.

// find how many materials are in the TopologicalView object
Lps::Uint32 materialCount;
materialCount = topologicalView->numberOfMaterials ();
std::cout << "Number of Materials: " << materialCount
 << std::endl;

// get unique identifiers of the materials in the
// TopologicalView and print them
Lps::UniqueIdList uidList;
uidList = topologicalView->getUidsOfMaterials ();
Lps::UniqueIdList::iterator it;
for (it = uidList.begin () ; it != uidList.end () ; ++it)
 std::cout << "Material " << *it << std::endl;

// given the list of unique identifiers, retrieve materials
// individually and store in a STL vector of MaterialPtr
Lps::MaterialPtrList materials;
for (it = uidList.begin () ; it != uidList.end () ; ++it)
 materials.push_back (topologicalView->getMaterial (*it));

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 User’s Guide

DRAFT 71 02 Apr 1999

Determining the MaterialGroups of a TopologicalView
Object

The following code returns the number of MaterialGroup objects
contained by the TopologicalView object ‘topologicalView’, lists the
unique identifiers of the MaterialGroup objects, and then retrieves them
individually.

// find how many materialGroups are in the TopologicalView object
Lps::Uint32 materialGroupCount;
materialGroupCount = topologicalView->numberOfMaterialGroups ();
std::cout << "Number of MaterialGroups: " << materialGroupCount
 << std::endl;

// get unique identifiers of the materialGroups in the
// TopologicalView and print them
Lps::UniqueIdList uidList = topologicalView-
>getUidsOfMaterialGroups ();
Lps::UniqueIdList::iterator it;
for (it = uidList.begin () ; it != uidList.end () ; ++it)
 std::cout << "MaterialGroup " << *it << std::endl;

// given the list of unique identifiers, retrieve materialGroups
// individually and store in a STL vector of MaterialGroupPtr
Lps::MaterialGroupPtrList materialGroups;
for (it = uidList.begin () ; it != uidList.end () ; ++it)
{
 materialGroups.push_back
 (topologicalView->getMaterialGroup (*it));
}

Determining the Leaps Object Type of a TopologicalView
Object

The following code determines whether the TopologicalView object is a
Solid, Face, or Solid, retrieves the LEAPS object that represents the
TopologicalView, and prints the unique identifiers of both objects.

// find type of LEAPS object that represents the
// TopologicalView object
if (topologicalView->objectType () == Lps::SolidObject)
{
 Lps::SolidPtr solid = topologicalView->getSolid ();
 std::cout << "TopologicalView " << topologicalView->uniqueId ()
 << " is Solid " << solid->uniqueId () << std::endl;
}
else if (topologicalView->objectType () == Lps::FaceObject)
{
 Lps::FacePtr face = topologicalView->getFace ();
 std::cout << "TopologicalView " << topologicalView->uniqueId ()
 << " is Face " << face->uniqueId () << std::endl;
}
if (topologicalView->objectType () == Lps::SurfaceObject)
{
 Lps::SurfacePtr surface = topologicalView->getSurface ();
 std::cout << "TopologicalView " << topologicalView->uniqueId ()
 << " is Surface " << surface->uniqueId ()
 << std::endl;
}

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 User’s Guide

DRAFT 72 02 Apr 1999

Determining the CommonViews that use the
TopologicalView Object

The following code returns the number of CommonView objects that use
the TopologicalView object ‘topologicalView’, lists the unique identifiers of
the CommonView objects, and then retrieves them individually.

// find how many CommonViews that use the TopologicalView object
Lps::Uint32 viewCount;
viewCount =
 topologicalView->numberOfCommonViewsUsingTopologicalView ();
std::cout << "Number of CommonViews: " << viewCount << std::endl;

// get unique identifiers of the CommonViews that use the
// TopologicalView and print them
Lps::UniqueIdList uidList;
uidList =
 topologicalView->getUidsOfCommonViewsUsingTopologicalView ();
Lps::UniqueIdList::iterator it;
for (it = uidList.begin () ; it != uidList.end () ; ++it)
 std::cout << "CommonView " << *it << std::endl;

// given the list of unique identifiers, retrieve CommonViews
// individually and store in a STL vector of CommonViewPtr
Lps::CommonViewPtrList commonViews;
for (it = uidList.begin () ; it != uidList.end () ; ++it)
{
 commonViews.push_back
 (topologicalView->getTopologicalView (*it));
}

Determining the Contents of a LEAPS Solid Object
A LEAPS Solid object is bounded by an OrientedClosedShell object. This
object is the outer boundary of the Solid. The Solid object may also have
zero or more OrientedClosedShell objects that define the voids in the
Solid object. If ‘solid’ is a Solid that has been retrieved from a Structure,
the contents of the Solid object can be queried and retrieved.

Determining the Outershell of a Solid Object
The following code returns the OrientedClosedShell’s unique identifier
that is the outer boundary of the Solid and then retrieves it.

// get unique identifiers of the outershell and print it
std::string uid = solid->getUidOfOuterShell ();
std::cout << "Solid " << solid->uniqueId ()
 << "has OrientedClosedShell " << uid
 << "as an outer shell" << std::endl;

// retrieve the outer shell of the Solid
Lps::OrientedClosedShellPtr outerShell;
outerShell = solid->getOuterShell ();

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 User’s Guide

DRAFT 73 02 Apr 1999

Determining the Voids of a Solid Object
The following code returns the number of OrientedClosedShell objects
that are voids in the Solid object ‘solid’, lists the unique identifiers of these
OrientedClosedShell objects, and then retrieves them individually.

// find how many voids are in the Solid object
Lps::Uint32 voidCount;
voidCount = solid->numberOfVoidShells ();
std::cout << "Number of Void Shells: " << voidCount
 << std::endl;

// get unique identifiers of the void shells in the Solid
// and print them
Lps::UniqueIdList uidList = solid->getUidsOfVoidShells ();
Lps::UniqueIdList::iterator it;
for (it = uidList.begin () ; it != uidList.end () ; ++it)
 std::cout << "Void Shell " << *it << std::endl;

// given the list of unique identifiers, retrieve void shells
// individually and store in a STL vector of
// OrientedClosedShellPtr
Lps::OrientedClosedShellPtrList voidShells;
for (it = uidList.begin () ; it != uidList.end () ; ++it)
 voidShells.push_back (solid->getVoidShell (*it));

Determining the TopologicalView that Represents the Solid
Object

If the Solid object, ‘solid,’ is represented by a TopologicalView, the
following code returns that TopologicalView object.

// if TopologicalView exists, retrieve that TopologicalView
// and print its unique id
if (solid->doesTopologicalViewExist ())
{
 Lps::TopologicalViewPtr view;
 view = solid->getTopologicalView ();
 std::cout << "TopologicalView " << view->uniqueId ()
 << " represents Solid " << solid->uniqueId ()
 << std::endl;
}

Determining the Contents of a LEAPS
OrientedClosedShell Object

A LEAPS OrientedClosedShell object is bounded by one or more Face
objects that form a closed shell. The OrientedClosedShell object is
oriented such that all face normals are either pointing inward or outward.
If ‘shell’ is an OrientedClosedShell that has been retrieved from a
Structure, the contents of the OrientedClosedShell object can be queried
and retrieved.

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 User’s Guide

DRAFT 74 02 Apr 1999

Determining the Orientation of an OrientedClosedShell
Object

The following code determines the orientation of the OrientedClosedShell
object ‘shell.’

// determine orientation of OrientedClosedShell and print it
Lps::OrientationEnum oriented;
oriented = shell->orientation ();
if (oriented == Lps::OutwardOrientation)
 std::cout << "Orientation is outward." << std::endl;
else if (oriented == Lps::InwardOrientation)
 std::cout << "Orientation is inward." << std::endl;
else
 std::cout << "Orientation is unknown." << std::endl;

Determining the Faces of an OrientedClosedShell Object
The following code returns the number of Face objects that compose the
OrientedClosedShell object ‘shell’, lists the unique identifiers of these
Face objects, and then retrieves them individually.

// find how many faces are in the OrientedClosedShell object
Lps::Uint32 faceCount;
faceCount = shell->numberOfFaces ();
std::cout << "Number of Faces: " << faceCount
 << std::endl;

// get unique identifiers of the faces in the
// OrientedClosedShell and print them
Lps::UniqueIdList uidList = shell->getUidsOfFaces ();
Lps::UniqueIdList::iterator it;
for (it = uidList.begin () ; it != uidList.end () ; ++it)
 std::cout << "Face " << *it << std::endl;

// given the list of unique identifiers, retrieve faces
// individually and store in a STL vector of FacePtr
Lps::FacePtrList faces;
for (it = uidList.begin () ; it != uidList.end () ; ++it)
 faces.push_back (shell->getFace (*it));

Determining the Solids that Use the OrientedClosedShell
Object

If the OrientedClosedShell object, ‘shell,’ is used by a Solid, the following
code lists the unique identifiers of the Solid objects that use ‘shell,’ and
then retrieves them individually.

// find how many solids are used by the OrientedClosedShell object
Lps::Uint32 solidCount;
solidCount = shell->numberOfSolidsUsingOrientedClosedShell ();
std::cout << "Number of Solids Using OrientedClosedShell: "
 << solidCount << std::endl;

// get unique identifiers of the solids used by the
// OrientedClosedShell and print them
Lps::UniqueIdList uidList;
uidList = shell->getUidsOfSolidsUsingOrientedClosedShell ();
Lps::UniqueIdList::iterator it;

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 User’s Guide

DRAFT 75 02 Apr 1999

for (it = uidList.begin () ; it != uidList.end () ; ++it)
{
 std::cout << "Solid Used By OrientedClosedShell: " << *it
 << std::endl;
}

// given the list of unique identifiers, retrieve solids
// individually and store in a STL vector of SolidPtr
Lps::SolidPtrList solids;
for (it = uidList.begin () ; it != uidList.end () ; ++it)
{
 solids.push_back
 (shell->getSolidUsingOrientedClosedShell (*it));
}

Determining the Contents of a LEAPS Face Object
A LEAPS Face object is bounded by an EdgeLoop object. This object is
the outer boundary of the Face. The Face object may also have zero or
more EdgeLoop objects that define the holes in the Face object. If ‘face’
is a Face that has been retrieved from a Structure, the contents of the
Face object can be queried and retrieved.

Determining the Orientation of an Face Object
The following code determines the orientation of the Face object ‘face.’

// determine orientation of Face and print it
Lps::OrientationEnum oriented;
oriented = face->orientation ();
if (oriented == Lps::OutwardOrientation)
 std::cout << "Orientation is outward." << std::endl;
else if (oriented == Lps::InwardOrientation)
 std::cout << "Orientation is inward." << std::endl;
else
 std::cout << "Orientation is unknown." << std::endl;

Determining the Outer Loop of a Face Object
The following code returns the EdgeLoop’s unique identifier that is the
outer boundary of the Face and then retrieves it.

// get unique identifiers of the outerloop and print it
std::string uid = face->getUidOfOuterLoop ();
std::cout << "Solid " << solid->uniqueId ()
 << "has EdgeLoop " << uid
 << "as an outer loop" << std::endl;

// retrieve the outer loop of the face
Lps::EdgeLoopPtr outerLoop;
outerLoop = face->getOuterLoop ();

Determining the Inner Loops of a Face Object
The following code returns the number of EdgeLoop objects that
represent holes in the Face object ‘face’, lists the unique identifiers of
these EdgeLoop objects, and then retrieves them individually.

// find how many edgeLoops are in the Face object

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 User’s Guide

DRAFT 76 02 Apr 1999

Lps::Uint32 edgeLoopCount;
edgeLoopCount = face->numberOfInnerLoops ();
std::cout << "Number of Inner Loops: " << edgeLoopCount
 << std::endl;

// get unique identifiers of the edgeLoops in the
// Face and print them
Lps::UniqueIdList uidList = face->getUidsOfInnerLoops ();
Lps::UniqueIdList::iterator it;
for (it = uidList.begin () ; it != uidList.end () ; ++it)
 std::cout << "EdgeLoop " << *it << std::endl;

// given the list of unique identifiers, retrieve edgeLoops
// individually and store in a STL vector of EdgeLoopPtr
Lps::EdgeLoopPtrList edgeLoops;
for (it = uidList.begin () ; it != uidList.end () ; ++it)
 edgeLoops.push_back (face->getInnerLoop (*it));

Determining the OrientedClosedShells that Use the Face
Object

If the Face object, ‘face,’ is used by an OrientedClosedShell, the following
code lists the unique identifiers of the OrientedClosedShell objects that
use ‘face,’ and then retrieves them individually.

// find how many shells are used by the Face object
Lps::Uint32 shellCount;
shellCount = face->numberOfOrientedClosedShellsUsingFace ();
std::cout << "Number of OrientedClosedShells Using Face: "
 << shellCount << std::endl;

// get unique identifiers of the shells used by the
// Face and print them
Lps::UniqueIdList uidList;
uidList = face->getUidsOfOrientedClosedShellsUsingFace ();
Lps::UniqueIdList::iterator it;
for (it = uidList.begin () ; it != uidList.end () ; ++it)
{
 std::cout << "OrientedClosedShell Used By Face: " << *it
 << std::endl;
}

// given the list of unique identifiers, retrieve shells
// individually and store in a STL vector of
// OrientedClosedShellPtr
Lps::OrientedClosedShellPtrList shells;
for (it = uidList.begin () ; it != uidList.end () ; ++it)
 shells.push_back (face->getOrientedClosedShellUsingFace (*it));

Determining the TopologicalView that Represents the Face
Object

If the Face object, ‘face,’ is represented by a TopologicalView, the
following code returns that TopologicalView object.

// if TopologicalView exists, retrieve that TopologicalView
// and print its unique id
if (face->doesTopologicalViewExist ())
{
 Lps::TopologicalViewPtr view;

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 User’s Guide

DRAFT 77 02 Apr 1999

 view = face->getTopologicalView ();
 std::cout << "TopologicalView " << view->uniqueId ()
 << " represents Face " << face->uniqueId ()
 << std::endl;
}

Determining the Surface the Face Object Is On
If the Face object, ‘face,’ the Surface object that the face in on can be
retrieved by the following code.

// retrieve surface that face lies on and print its unique id
Lps::SurfacePtr surface = face->getSurface ();
std::cout << "Face " << face->uniqueId ()
 << " lies on Surface " << surface->uniqueId ()
 << std::endl;

Determining the Contents of a LEAPS EdgeLoop Object
A LEAPS EdgeLoop object is composed of one or more Edge objects that
form a closed loop. The EdgeLoop object is oriented such that the loop is
either counter clockwise or clockwise. If ‘edgeLoop’ is an EdgeLoop that
has been retrieved from a Structure, the contents of the EdgeLoop object
can be queried and retrieved.

Determining the Orientation of an EdgeLoop Object
The following code determines the orientation of the EdgeLoop object
‘edgeLoop.’

// determine orientation of EdgeLoop and print it
Lps::OrientationEnum oriented;
oriented = edgeLoop->orientation ();
if (oriented == Lps::CounterClockwiseOrientation)
 std::cout << "Orientation is counter clockwise." << std::endl;
else if (oriented == Lps::ClockwiseOrientation)
 std::cout << "Orientation is clockwise." << std::endl;
else
 std::cout << "Orientation is unknown." << std::endl;

Determining the Edges of an EdgeLoop Object
The following code returns the number of Edge objects that compose the
EdgeLoop object ‘edgeLoop’, lists the unique identifiers of these Edge
objects, and then retrieves them individually.

// find how many edges are in the EdgeLoop object
Lps::Uint32 edgeCount;
edgeCount = edgeLoop->numberOfEdges ();
std::cout << "Number of Edges: " << edgeCount
 << std::endl;

// get unique identifiers of the edges in the
// EdgeLoop and print them
Lps::UniqueIdList uidList = edgeLoop->getUidsOfEdges ();
Lps::UniqueIdList::iterator it;
for (it = uidList.begin () ; it != uidList.end () ; ++it)
 std::cout << "Edge " << *it << std::endl;

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 User’s Guide

DRAFT 78 02 Apr 1999

// given the list of unique identifiers, retrieve edges
// individually and store in a STL vector of EdgePtr
Lps::EdgePtrList edges;
for (it = uidList.begin () ; it != uidList.end () ; ++it)
 edges.push_back (edgeLoop->getEdge (*it));

Determining the Faces that Use the EdgeLoop Object
If the EdgeLoop object, ‘edgeLoop,’ is used by a Face, the following code
lists the unique identifiers of the Face objects that use ‘edgeLoop,’ and
then retrieves them individually.

// find how many faces are used by the EdgeLoop object
Lps::Uint32 faceCount;
faceCount = edgeLoop->numberOfFacesUsingEdgeLoop ();
std::cout << "Number of Faces Using EdgeLoop: "
 << faceCount << std::endl;

// get unique identifiers of the faces used by the
// EdgeLoop and print them
Lps::UniqueIdList uidList;
uidList = edgeLoop->getUidsOfFacesUsingEdgeLoop ();
Lps::UniqueIdList::iterator it;
for (it = uidList.begin () ; it != uidList.end () ; ++it)
{
 std::cout << "Face Used By EdgeLoop: " << *it
 << std::endl;
}

// given the list of unique identifiers, retrieve faces
// individually and store in a STL vector of FacePtr
Lps::FacePtrList faces;
for (it = uidList.begin () ; it != uidList.end () ; ++it)
 faces.push_back (edgeLoop->getFaceUsingEdgeLoop (*it));

Determining the Contents of a LEAPS Edge Object
A LEAPS Edge object is an oriented segment of a Pcurve object. It is
defined by a start Ppoint object and an end Ppoint object. If ‘edge’ is an
Edge that has been retrieved from a Structure, the contents of the Edge
object can be queried and retrieved.

Determining the Start Point of an Edge Object
For the Edge object ‘edge’, the following code lists the unique identifier of
the Ppoint object that starts ‘edge,’ and then retrieve this Ppoint.

// get unique identifier of the start Ppoint of the edge
// and print it
std::string uid = edge->getUidOfStartPoint ();
std::cout << "Ppoint " << *it << " starts Edge "
 << edge->uniqueId () << std::endl;

// retrieve start Ppoint object for edge
Lps::PpointPtr startPt = edge->getStartPoint ();

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 User’s Guide

DRAFT 79 02 Apr 1999

Determining the End Point of an Edge Object
For the Edge object ‘edge’, the following code lists the unique identifier of
the Ppoint object that ends ‘edge,’ and then retrieve this Ppoint.

// get unique identifier of the end Ppoint of the edge
// and print it
std::string uid = edge->getUidOfEndPoint ();
std::cout << "Ppoint " << *it << " ends Edge "
 << edge->uniqueId () << std::endl;

// retrieve end Ppoint object for edge
Lps::PpointPtr endPt = edge->getEndPoint ();

Determining the Pcurve that the Edge Object Lies on
For the Edge object ‘edge’, the following lists the unique identifier of the
Pcurve object the edge lies on, and then retrieve it.

// get unique identifier of the Pcurve of the edge
// and print it
std::string uid = edge->getUidOfPcurve ();
std::cout << "Edge " << edge->uniqueId () << " lies on Pcurve "
 << *it << std::endl;

// retrieve Pcurve object for edge
Lps::PcurvePtr pcrv = edge->getPcurve ();

Determining the Surface that the Edge Object Lies on
For the Edge object ‘edge’, the following lists the unique identifier of the
Surface object the edge lies on, and then retrieve it.

// get unique identifier of the Surface of the edge
// and print it
std::string uid = edge->getUidOfSurface ();
std::cout << "Edge " << edge->uniqueId () << " lies on Surface "
 << *it << std::endl;

// retrieve Surface object for edge
Lps::SurfacePtr surf = edge->getSurface ();

Determining the CoEdge that the Edge Object Is A Part Of
If the Edge object, ‘edge,’ is part of a CoEdge object, the following code
list the unique identifier that CoEdge object and retrieves it.

// get unique identifier of CoEdge of the edge
// and print it
std::string uid = edge->getUidOfCoEdge ();
if (uid.length () == 0)
{
 std::cout << "Edge " << edge->uniqueId ()
 << " is Not part of CoEdge." << std::endl;
}
else
{
 std::cout << "Edge " << edge->uniqueId ()
 << " is part of CoEdge " << uid << std::endl;
 // retrieve CoEdge object for edge

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 User’s Guide

DRAFT 80 02 Apr 1999

 Lps::CoEdgePtr coEdge = edge->getCoEdge ();
}

Determining the EdgeLoops that Use the Edge Object
If the Edge object, ‘edge,’ is used by an EdgeLoop, the following code
lists the unique identifiers of the EdgeLoop objects that use ‘edge,’ and
then retrieves them individually.

// find how many edgeLoops are used by the Edge object
Lps::Uint32 edgeLoopCount;
edgeLoopCount = edgeLoop->numberOfEdgeLoopsUsingEdge ();
std::cout << "Number of EdgeLoops Using Edge: "
 << edgeLoopCount << std::endl;

// get unique identifiers of the edgeLoops used by the
// Edge and print them
Lps::UniqueIdList uidList;
uidList = edgeLoop->getUidsOfEdgeLoopsUsingEdge ();
Lps::UniqueIdList::iterator it;
for (it = uidList.begin () ; it != uidList.end () ; ++it)
 std::cout << "EdgeLoop Used By Edge: " << *it << std::endl;

// given the list of unique identifiers, retrieve edgeLoops
// individually and store in a STL vector of EdgeLoopPtr
Lps::EdgeLoopPtrList edgeLoops;
for (it = uidList.begin () ; it != uidList.end () ; ++it)
 edgeLoops.push_back (edgeLoop->getEdgeLoopUsingEdge (*it));

Determining the Contents of a LEAPS CoEdge Object
A LEAPS CoEdge object is composed of two or more Edge objects that
are logically coincident. If ‘coEdge’ is an CoEdge that has been retrieved
from a Structure, the contents of the CoEdge object can be queried and
retrieved.

Determining the Edges of a CoEdge Object
The following code returns the number of Edge objects that compose the
CoEdge object ‘coEdge’, lists the unique identifiers of these Edge objects,
and then retrieves them individually.

// find how many edges are in the CoEdge object
Lps::Uint32 edgeCount;
edgeCount = coEdge->numberOfEdges ();
std::cout << "Number of Edges: " << edgeCount
 << std::endl;

// get unique identifiers of the edges in the
// CoEdge and print them
Lps::UniqueIdList uidList = coEdge->getUidsOfEdges ();
Lps::UniqueIdList::iterator it;
for (it = uidList.begin () ; it != uidList.end () ; ++it)
 std::cout << "Edge " << *it << std::endl;

// given the list of unique identifiers, retrieve edges
// individually and store in a STL vector of EdgePtr
Lps::EdgePtrList edges;
for (it = uidList.begin () ; it != uidList.end () ; ++it)
 edges.push_back (coEdge->getEdge (*it));

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 User’s Guide

DRAFT 81 02 Apr 1999

Determining the Contents of a LEAPS Ppoint Object
A LEAPS Ppoint object is a parametric point on a Pcurve object. A Ppoint
may start zero, one, or two Edge objects and end zero, one, or two Edge
objects. Additionally, a Ppoint object may be part of a CoPoint object. If
‘ppoint’ is a Ppoint that has been retrieved from a Structure, the contents
of the Ppoint object can be queried and retrieved.

Determining the Edges the Ppoint Object Starts and Ends
The following code illustrates how to retrieve the Edges that the Ppoint
object ‘ppoint’ starts and ends.

// find how many edges the Ppoint object starts
Lps::Uint32 startEdgeCount;
startEdgeCount = ppoint->numberOfEdgesIStart ();
std::cout << "Ppoint " << ppoint->uniqueId () << " starts "
 << startEdgeCount << " Edges." << std::endl;

// find how many edges the Ppoint object ends
Lps::Uint32 endEdgeCount;
endEdgeCount = ppoint->numberOfEdgesIEnd ();
std::cout << "Ppoint " << ppoint->uniqueId () << " ends "
 << endEdgeCount << " Edges." << std::endl;

// get unique identifiers of the edges the Ppoint starts
Lps::UniqueIdList uidList = ppoint->getUidsOfEdgesIStart ();
Lps::UniqueIdList::iterator it;
for (it = uidList.begin () ; it != uidList.end () ; ++it)
 std::cout << "Ppoint " << ppoint->uniqueId () << " starts "
 << " Edge " << *it << std::endl;

// get unique identifiers of the edges the Ppoint ends
uidList = ppoint->getUidsOfEdgesIEnd ();
for (it = uidList.begin () ; it != uidList.end () ; ++it)
 std::cout << "Ppoint " << ppoint->uniqueId () << " ends "
 << " Edge " << *it << std::endl;

// retrieve edges in a STL vector of EdgePtr that
// the Ppoint starts
Lps::EdgePtrList startEdges = ppoint->getEdgesIStart ();

// retrieve edges in a STL vector of EdgePtr that
// the Ppoint ends
Lps::EdgePtrList endEdges = ppoint->getEdgesIEnd ();

Determining the Pcurve Object that the Ppoint Object Lies
on

The following code illustrates how to retrieve the Pcurve object that the
Ppoint object ‘ppoint’ lies on.

// find Pcurve object that the Ppoint object lies on
Lps::PcurvePtr pcrv = ppoint->getPcurve ();
std::cout << "Ppoint " << ppoint->uniqueId ()
 << " lies on Pcurve " << pcrv->uniqueId () << std::endl;

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 User’s Guide

DRAFT 82 02 Apr 1999

Determining the location of the Ppoint Object
The following code illustrates how to retrieve the location (i.e. the
parametric value) of the Ppoint object ‘ppoint.’.

// find the location of the Ppoint object on the Pcurve
Lps::Real64 loc = ppoint->location ();
std::cout << "Ppoint " << ppoint->uniqueId () << " is located at "
 << loc << std::endl;

The following code illustrates how to retrieve the cartesian location of the
Ppoint object ‘ppoint.’

// find the cartesian location of the Ppoint object on the Pcurve
Lps::CartesianLocation cartesianLoc;
cartesianLoc = ppoint->evalForCartesianLoc ();
std::cout << "Ppoint " << ppoint->uniqueId ()
 << " is located at (" << cartesianLoc.x() << ", "
 << cartesianLoc.y() << ", "
 << cartesianLoc.z() << ")" << std::endl;

The following code illustrates how to retrieve the pcurve location of the
Ppoint object ‘ppoint.’

// find the pcurve location of the Ppoint object on the Pcurve
Lps::PcurveLocation pcurveLoc;
pcurveLoc = ppoint->evalForPcurveLoc ();
std::cout << "Ppoint " << ppoint->uniqueId ()
 << " is located at s = " << pcurveLoc.s() << ", u = "
 << pcurveLoc.u() << ", v = " << pcurveLoc.v()<< ", x = "
 << pcurveLoc.x() <<", y = " << pcurveLoc.y()
 <<", z = " << pcurveLoc.z () << std::endl;

Determining the CoPoint that the Ppoint Object is a Part of
If the Ppoint object, ‘ppoint,’ is part of a CoPoint object, the following code
list the unique identifier that CoPoint object and retrieves it.

// get unique identifier of CoPoint of the ppoint
// and print it
std::string uid = ppoint->getUidOfCoPoint ();
if (uid.length () == 0) // no CoPoint
{
 std::cout << "Ppoint " << ppoint->uniqueId ()
 << " is Not part of CoPoint." << std::endl;
}
else
{
 std::cout << "Ppoint " << ppoint->uniqueId ()
 << " is part of CoPoint " << uid << std::endl;
 // retrieve CoPoint object for ppoint
 Lps::CoPointPtr coPoint = ppoint->getCoPoint ();
}

Determining the Contents of a LEAPS CoPoint Object
A LEAPS CoPoint object is composed of two or more Ppoint objects that
are logically coincident. If ‘coPoint’ is an CoPoint that has been retrieved

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 User’s Guide

DRAFT 83 02 Apr 1999

from a Structure, the contents of the CoPoint object can be queried and
retrieved.

Determining the Ppoints of a CoPoint Object
The following code returns the number of Ppoint objects that compose the
CoPoint object ‘coPoint’, lists the unique identifiers of these Ppoint
objects, and then retrieves them individually.

// find how many Ppoints are in the CoPoint object
Lps::Uint32 ppointCount;
ppointCount = coPoint->numberOfPpoints ();
std::cout << "Number of Ppoints: " << ppointCount
 << std::endl;

// get unique identifiers of the Ppoints in the
// CoPoint and print them
Lps::UniqueIdList uidList = coPoint->getUidsOfPpoints ();
Lps::UniqueIdList::iterator it;
for (it = uidList.begin () ; it != uidList.end () ; ++it)
 std::cout << "Ppoint " << *it << std::endl;

// given the list of unique identifiers, retrieve Ppoints
// individually and store in a STL vector of PpointPtr
Lps::PpointPtrList ppoints;
for (it = uidList.begin () ; it != uidList.end () ; ++it)
 ppoints.push_back (coPoint->getPpoint (*it));

Determining the Cartesian location of the CoPoint Object
The following code illustrates how to retrieve the cartesian location of the
CoPoint object ‘coPoint.’

// find the cartesian location of the CoPoint object
Lps::CartesianLocation cartesianLoc;
cartesianLoc = coPoint->location ();
std::cout << "CoPoint " << coPoint->uniqueId ()
 << " is located at (" << cartesianLoc.x() << ", "
 << cartesianLoc.y() << ", "
 << cartesianLoc.z() << ")" << std::endl;

Determining the Contents of a LEAPS Pcurve Object
A LEAPS Pcurve object is a parametric spline curve on a Surface object.
The Pcurve object may also have zero or more Ppoint objects that are
mapped to it. If ‘pcurve’ is a Pcurve that has been retrieved from a
Structure, the contents of the Pcurve object can be queried and retrieved.

Determining the Surface that the Pcurve Object is Mapped
to

The following code returns the Surface’s unique identifier that the Pcurve
object is mapped to and then retrieves it.

// get unique identifiers of the outershell and print it
std::string uid = pcurve->getUidOfSurface ();
std::cout << "Pcurve " << pcurve->uniqueId ()
 << "is mapped to Surface " << uid << std::endl;

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 User’s Guide

DRAFT 84 02 Apr 1999

// retrieve the Surface that the Pcurveis mapped to
Lps::SurfacePtr surface;
surface = pcurve->getSurface ();

Determining the Ppoints that are Mapped to a Pcurve
Object

The following code returns the number of Ppoint objects that is mapped to
the Pcurve object ‘pcurve’, lists the unique identifiers of these Ppoint
objects, and then retrieves them individually.

// find how many Ppoints that are mapped to the Pcurve object
Lps::Uint32 ppointCount;
ppointCount = pcurve->numberOfMappedPpoints ();
std::cout << "Number of Mapped Ppoints: " << ppointCount
 << std::endl;

// get unique identifiers of the Ppoints that are mapped
// to the Pcurve object and print them
Lps::UniqueIdList uidList = pcurve->getUidsOfMappedPpoints ();
Lps::UniqueIdList::iterator it;
for (it = uidList.begin () ; it != uidList.end () ; ++it)
 std::cout << "Ppoint " << *it << std::endl;

// given the list of unique identifiers, retrieve Ppoints
// individually and store in a STL vector of PpointPtr
Lps::PpointPtrList ppoints;
for (it = uidList.begin () ; it != uidList.end () ; ++it)
 ppoints.push_back (pcurve->getMappedPpoint (*it));

Determining the Contents of a LEAPS Surface Object
A LEAPS Surface object is a non-uniform rational b-spline representation
of a surface in Cartesian space. The Surface object may also have zero
or more Pcurve objects that are mapped to it. If ‘surface’ is a Surface that
has been retrieved from a Structure, the contents of the Surface object
can be queried and retrieved.

Determining the Pcurves that are Mapped to a Surface
Object

The following code returns the number of Pcurve objects that is mapped
to the Surface object ‘surface’, lists the unique identifiers of these Pcurve
objects, and then retrieves them individually.

// find how many Pcurves that are mapped to the Surface object
Lps::Uint32 pcurveCount;
pcurveCount = surface->numberOfMappedPcurves ();
std::cout << "Number of Mapped Pcurves: " << pcurveCount
 << std::endl;

// get unique identifiers of the Pcurves that are mapped
// to the Surface object and print them
Lps::UniqueIdList uidList = surface->getUidsOfMappedPcurves ();
Lps::UniqueIdList::iterator it;
for (it = uidList.begin () ; it != uidList.end () ; ++it)
 std::cout << "Pcurve " << *it << std::endl;

Patent Pending Related to GOBS Technology. Authorization for Use/Disclosure Required.
LEAPS V2 User’s Guide

DRAFT 85 02 Apr 1999

// given the list of unique identifiers, retrieve Pcurves
// individually and store in a STL vector of PcurvePtr
Lps::PcurvePtrList pcurves;
for (it = uidList.begin () ; it != uidList.end () ; ++it)
 pcurves.push_back (surface->getMappedPcurve (*it));

Determining the TopologicalView that Represents the
Surface Object

If the Surface object, ‘surface,’ is represented by a TopologicalView, the
following code returns that TopologicalView object.

// if TopologicalView exists, retrieve that TopologicalView
// and print its unique id
if (surface->doesTopologicalViewExist ())
{
 Lps::TopologicalViewPtr view;
 view = surface->getTopologicalView ();
 std::cout << "TopologicalView " << view->uniqueId ()
 << " represents Surface " << surface->uniqueId ()
 << std::endl;
}

